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Preface

Preface
Purpose of the Book

2.04 million bachelors degrees are awarded annually in the US.* About 128 thousand are Engineering degrees, and about 19 
thousand are Engineering Technology degrees and Technician degrees. The number of Mechanical Engineering 
Technology, Construction Engineering Technology, and Construction Management graduates is less than 5 thousand per 
year, so the market for algebra-based Strength of Materials textbooks for Engineering Technology is a small fraction of the 
market for calculus-based Engineering textbooks.

I believe most textbooks are too expensive. Since I attended college in the 1980s, textbook prices have risen about twice as 
fast as inflation. In those days, all textbooks were printed. Today there is another option: low-cost or free online e-books 
which are revised more frequently than printed books. While traditional textbooks are revised every 4 to 10 years based on 
input from experts in the topic, this e-book is revised every semester based on input from experts in learning: my students. 
The last problem I assign for each chapter is “Describe at least one improvement you would make to this chapter to make it 
more understandable.” Responses to this question lead, on average, to 80 revisions in the textbook every semester.

Students say the explanations in many Engineering Technology textbooks are too theoretical, too wordy, and too difficult to
understand. Students also complain about the lack of complete unit conversions in example problems. In this textbook, the 
factor-label method of unit conversion is emphasized from the first chapter, and is used in all example problems. 
Inconsistent use of symbols between related courses also creates confusion, so this textbook uses the most commonly-used 
symbols. Reference tables list all of the symbols used in the textbook with common units, and definitions of technical terms.

Professors know that many students copy answers from the internet instead of learning to solve the problems for 
themselves, then these same students fail exams. Perhaps 10% of the learning in Strength of Materials occurs in class, and 
90% occurs as students solve problems. Neither the homework problems for this textbook nor their solutions are available 
online. The homework set is changed every semester. Professors wanting the latest homework set can contact me directly.

Summarizing, the goals of this book are:

• Free distribution in pdf format over the internet, with low-cost distribution of a printed edition on Amazon.com

• Frequent revisions based on student input

• Concise explanations

• Examples with complete unit conversions

• Symbols consistent with those used in related courses

This e-book is revised on an ongoing basis, with a new edition every semester. In response to the COVID-19 pandemic, I 
posted YouTube lectures online in spring 2020. You can find them by searching YouTube for my name. Please send 
improvement suggestions, either for the book or for the online lectures, to me at met.dupen@gmail.com.

Barry Dupen

Metallurgist and Professor of Mechanical Engineering Technology

School of Polytechnic, Purdue University Fort Wayne, Fort Wayne, Indiana, December 2023

This 25th edition was revised in December 2023, and is licensed under Creative Commons Attribution-
ShareAlike 4.0 International (CC BY-SA 4.0) See creativecommons.org for license details.

* Data from 2019-2020. Current numbers are in the Digest of Educational Statistics (Table 318.30), published by the National Center 
for Educational Statistics, U.S. Department of Education, at nces.ed.gov.
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Terminology

Terminology
Symbols used in this book, with typical units

Because the Roman and Greek alphabets contain a finite number of letters, symbols are recycled and used for more than one
term. Check the context of the equation to figure out what the unit means in that equation.

Other science and engineering disciplines use different symbols for common terms. For example, P is used for point load 
here; in Physics classes, F is commonly used for point load. Some older Strength of Materials texts use µ for Poisson's ratio,
s for stress, and e for strain; the formulas are the same, but the labels differ.

Symbol Term U.S. Units SI Units

α Thermal expansion coefficient °F-1 °C-1

γ Shear strain ⋯ ⋯
γ Specific weight lb./in.3, lb./ft.3 N/m3

δ Change in dimension (length, diameter, etc.) in. mm
Δ Change ⋯ ⋯
Δ Beam deflection in. mm
ε Strain ⋯ ⋯
η joint Joint efficiency % %

ν Poisson's ratio ⋯ ⋯
ρ Density slug/ft.3 kg/m3

σ Normal (perpendicular) stress psi, ksi MPa
τ Shear (parallel) stress psi, ksi MPa
θ Angle of twist (radians) (radians)

A , a Area in.2 mm2, m2

A' Term in the General Shear Formula in.2 mm2, m2

b Base dimension of a rectangle in. mm
c Torsion problem: distance from centroid to outer surface

Beam problem: distance from neutral axis to outer surface
in. mm

d Diameter in. mm
d Depth of a steel wide-flange beam (W-beam) in. mm
d Transfer distance in. mm

d i , d o Inside and outside diameters of a hollow section in. mm

d H Hole diameter in. mm

e Eccentricity in. mm
E Young's modulus (a.k.a. modulus of elasticity) psi, ksi MPa

f weld Unit strength of a weld kip/in. kN/mm

F.S. Factor of safety ⋯ ⋯
G Shear modulus (a.k.a. modulus of rigidity) psi, ksi MPa
h Height dimension of a rectangle in. mm
h Fillet weld throat in. mm
I Moment of inertia in.4 mm4

J Polar moment of inertia in.4 mm4

K Stress concentration factor ⋯ ⋯
K Effective length factor (in column analysis) ⋯ ⋯
l Fillet weld leg in. mm
L Length (of a tension member or a beam) ft. m
L Total weld length in. cm

8



Terminology

Symbol Defnition U.S. Units SI Units

M Moment lb.⋅ft., kip⋅ft. kN⋅m
n Number of shear planes ⋯ ⋯
N Number of bolts ⋯ ⋯

N F Number of holes in the fracture plane ⋯ ⋯
p Fluid pressure psi, ksi kPa
P Point load lb., kip kN

Pcr Euler critical buckling load lb., kip kN

PG Bolt load – gross tensile failure of the plate lb., kip kN

PN Bolt load – net tensile failure of the plate lb., kip kN

PP Bolt load – bearing failure of the plate lb., kip kN

PS Bolt load – bolt shear failure lb., kip kN

P weld Weld load (lapped plates loaded in tension) lb., kip kN

Q Term in the General Shear Formula in.3 mm3

r Radius (of a hole, fillet, or groove) in. mm
rG Radius of gyration in. mm

R Reaction force lb., kip kN
R Radius of curvature in., ft. mm, m
S Section modulus in.3 mm3

t Thickness in. mm
t f Thickness of the flange of a steel W-beam in. mm

t net Net thickness of a beam at the shear plane in. mm

t w Thickness of the web of a steel W-beam in. mm

T Torque lb.⋅ft., kip⋅ft. kN⋅m
T Temperature °F °C
V Shear load lb., kip kN
w Distributed load (weight per unit length) lb./ft., kip/ft. kN/m
W Weight lb., kip kN

x, y, z Orthogonal axes in three-dimensional space: x is horizontal, 
y is vertical, and z is into the page.

⋯ ⋯

x Distance along the x-axis in., ft. mm, m
y Distance along the y-axis, such as the distance from the 

neutral axis in beam problems
in., ft. mm, m

y Distance from the reference axis to the x-x axis of a 
composite shape [moment of inertia problems]

in. mm

y Term in the General Shear Formula in. mm
z Distance along the z-axis in., ft. mm, m
Z Plastic section modulus in.3 mm3
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Terminology

Greek Letters

Upper case Lower case Name Upper case Lower case Name

A α Alpha Ν ν Nu
B β Beta Ξ ξ Xi
Γ γ Gamma O ο Omicron
Δ δ Delta Π π Pi
E ε Epsilon P ρ Rho
Z ζ Zeta Σ σ Sigma
H η Eta T τ Tau
Θ θ Theta Y υ Upsilon
I ι Iota Φ ϕ Phi
K κ Kappa X χ Chi
Λ λ Lambda Ψ ψ Psi
M μ Mu Ω ω Omega
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Definitions

Defnitions
Allowable (stress, load, etc.)..............Permitted for safe design. 
AISC...................................................The American Institute of Steel Construction is a technical and trade association 

which sets standards for structural steel products, design, and construction.
ASM International..............................Formerly the American Society for Metals, this professional organization publishes 

handbooks and hosts conferences focusing on metals, polymers, and ceramics.
ASME.................................................The American Society of Mechanical Engineers is a technical, professional, research, 

and educational association which sets standards for boiler and pressure vessel 
design, fasteners, power plants, plumbing fixtrures, etc.

ASTM International...........................Formerly the American Society for Testing and Materials, this standards organization 
develops standard test methods and standards for material composition and properties.

Bending moment, M ........................Moment in a beam that is loaded in bending with transverse loads.
Bending stress, σ ..............................A normal stress along the length of a beam that develops due to transverse loading.
Buckling.............................................Collapse of a long, thin member under longitudinal compressive loading, at a load 

much lower than the load that causes yielding in tension.
Density, ρ .........................................Mass density is the mass of an object or fluid divided by its volume. See specific 

weight entry for weight density.
Depth of a W-beam, d ......................Dimension from top to bottom of a horizontally oriented steel wide-flange beam.
Distributed load, w ...........................Force acting over a length (such as the weight of a beam) or area (such as a snow load

on a roof). Compare point load.
Eccentricity, e ...................................Distance between the neutral axis of a part and the location of an applied point load.
Effective length of a column..............Portion of the length of a column that bows like a fully pinned column.
Elastic deformation.............................Temporary deformation; release the load and the part returns to its original shape. 

Compare plastic deformation.
Elastic modulus, E ...........................A measure of the stiffness of a material (the resistance to elastically deforming under 

a given load.) The slope of the linear elastic portion of the stress-strain curve. Also 
called Young's modulus or modulus of elasticity.

Euler critical buckling load, P cr .......The load at which an ideal Euler column will fail, assuming perfect material and 
perfectly aligned loading.

Factor of Safety, F.S...........................The material's strength (typically yield strength) divided by the actual stress in the 
part. Also called “factor of ignorance” because it includes unknowns such as 
materials defects, improper installation, abuse by the operator, lack of maintenance, 
corrosion or rot, temperature variations, and the mismatch between theory and reality.

Fillet weld...........................................A weld with a triangular cross section used for joining lapped plates. Unlike soldering
or brazing, welding involves melting the base metal as well as the joining material.

Fracture plane.....................................In a bolted joint that fails, fracture occurs through the bolt holes or through a plate 
away from the bolt holes...the site of fracture is called the fracture plane.

General shear formula........................Equation for finding the shear stress within a beam of any shape.
Joint efficiency...................................The efficiency of a bolted or welded joint is the lowest allowable load divided by the 

allowable load of the weaker of the two plates some distance from the joint.
Longitudinal direction........................Along the length of a part, such as a beam or shaft. Compare transverse direction.
Longitudinal (axial) stress, σ ...........Normal stress that develops in a tensile or compressive member due to axial loading.
Modulus of elasticity, E ...................See elastic modulus.
Moment, M .......................................More accurately called a force moment, the product of a length and a transversely 

applied force. Used in beam problems. There are other types of moment (such as area 
moment: the product of a length and an area).

Moment of inertia, I .........................More accurately called “second moment of area”. Divide a shape into n tiny areas a, 
each at a distance y from the x-x centroidal axis, and sum the areas and distances as

I x=∑
1

n

ai yi
2 . The larger the moment of inertia, the greater the bending load a beam 

can support, and the less bending deflection will occur.
Normal................................................Perpendicular, in the mathematical sense.
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Normal stress, σ ...............................Force divided by area, when the force acts perpendicular to the area. Tensile and 
compressive stresses are normal stresses.

Orthogonal axes..................................Axes at right angles to each other – the typical x-y-z axes in three-dimensional 
Cartesian space.

Plastic deformation.............................Permanent deformation; release the load and the part remains distorted. Compare 
elastic deformation.

Plastic section modulus, Z ................Sum of the first moments of areas above and below the neutral axis of a steel beam. 
Used for calculating bending stresses in structural steel beams.

Point load, P .....................................Force acting at a single point. Compare distributed load.
Poisson's ratio, ν ..............................A mechanical property of engineering materials equal to the negative of the transverse

strain divided by longitudinal strain. A measure of how much a tensile member will 
thin during elastic deformation.

Polar moment of inertia, J ................More accurately called “polar second moment of area”. Divide a shape into n tiny 
areas a, each at a distance r from the centroid, and sum the areas and distances as

J=∑
1

n

a i r i
2 . The larger the polar moment of inertia, the greater the torque a shaft can

support, and the less angular twist will be produced.
Pressure (of a fluid), p .....................Fluid equivalent of normal stress. A pressurized gas produces a uniform pressure 

perpendicular to the walls of the pressure vessel. A pressurized liquid produces a 
uniform pressure in a small pressure vessel; the pressure is nonuniform in a tall vessel
due to gravity (lower pressure at the top, higher at the bottom).

Radius of curvature, R .....................If a beam segment is bent with a constant bending moment, the segment becomes a 
circular arc with a radius of curvature, R.

Radius of gyration, rG ......................Concentrate an area at a distance r from the x-x neutral axis. If the moment of inertia 
of the original area is the same as for the concentrated area, then rGx is the radius of 
gyration about the x-x axis. The larger the radius of gyration, the more resistant a 
column is to buckling. Calculate rG=√ I / A .

Reaction moment, M A  or M B ........Moment at reaction point A or B supporting a transversely loaded cantilever beam.
Reaction force, RA  or RB ................Forces at reaction points A or B which support a transversely loaded beam.
SAE International...............................Formerly known as the Society of Automotive Engineers, this professional 

organization develops standards for products and materials used in transportation 
industries (automotive, aerospace, and commercial vehicles).

Section modulus, S ...........................Moment of inertia divided by the distance from the neutral axis to the surface. The 
larger the section modulus, the more resistant a beam is to bending.

Shear load, V ....................................Transverse load on a beam.
Shear modulus, G .............................The slope of the linear elastic portion of the shear stress – shear strain curve.
Shear plane.........................................In a bolted joint with two plates pulling in opposite directions, the shear plane is the 

transverse plane within a bolt that lies at the interface of the two plates.
Shear strain, γ ..................................Shear deflection divided by original unit length
Shear stress, τ ...................................Force divided area, when the force acts parallel to the area.
Specific weight, γ ............................Specific weight (“weight density”), is the weight of an object or fluid divided by its 

volume. In this textbook, lower-case Greek letter gamma is shear strain, while bold 
gamma is specific weight. See density entry for mass density.

Strain (normal), ε .............................Change in length of a material under normal load divided by initial length.
Stress..................................................See normal stress, shear stress, bending stress, torsional stress, longitudinal stress.
Stress concentration............................A locally high stress due to a sharp discontinuity in shape, such as a hole or notch 

with a small radius. While the overall stress in the part may be at a safe level, the 
stress at the discontinuity can exceed yield or ultimate strength, causing failure.

Tensile strength, σUTS .......................Maximum stress on the stress-strain diagram. Beyond this point, the material necks 
and soon breaks.

Thermal expansion coefficient, α ....Materials property that determines how much a material expands or contracts with 
changing temperature.
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Torque, T ..........................................Rotational moment applied to a shaft. Units of moment and torque are the same (force
× distance).

Torsion................................................Twisting of a shaft due to an applied torque.
Torsional stress, τ ............................A shear stress that develops in a shaft due to torsional loading.
Transfer distance, d ..........................Term used in calculating moment of inertia of a compound shape.
Transverse direction...........................Perpendicular (crosswise) to the length of a long part, such as a beam or shaft. 

Compare longitudinal direction.
Ultimate tensile strength, σUTS .........See tensile strength.
W-beam..............................................Wide-flange steel beam having a cross-section     .
Yield strength, σYS ............................Below the yield strength, a material deforms elastically; above it, the material deforms

plastically (undergoes permanent deformation).
Young's modulus, E .........................See elastic modulus.
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Introduction to Strength of Materials

Introduction to Strength of Materials
Plan of this Book

The Table of Contents at the beginning of the book and the Index at the end of the book can help you find topics. The index
lists the first page in the book where a topic is explained, not every page where it is used.

Use the Terminology section if you need to know what a particular symbol means, along with its typical units.

The Defnitions section describes what the various terms mean, so if you run into a technical term that was introduced in a 
previous chapter, you don't have to reread that chapter to find out what the word means.

The topics in the 16 chapters are organized so that concepts you learn in one chapter are used in later chapters, as illustrated
in the chart on the next page. We start with unit conversions because they are necessary in all future chapters. Next, we 
focus on stress and strain in various applications. More than a third of the book is devoted to beam analysis and design. 
After beams, we calculate buckling loads of columns, and finish with techniques for visualizing stress and strain.

The Key Equations introduced in each chapter are listed at the end of that chapter. You may find it useful to make your own 
list of equations, and build on it as you work through the book.

The Appendices contain data that you will need to solve homework problems, so consider printing a copy of the 
Appendices for this purpose.

Appendix A discusses unit conversions.

Appendix B lists mechanical and physical properties of common commercial metals, concrete, and stone.

Appendix C lists the properties of various shapes.

Appendix D lists the properties of steel beams, steel pipes, and copper tubing.

Appendix E lists mechanical, physical, and dimensional properties of softwood lumber.

Appendix F provides beam equations for a number of beam loading cases.

What is Strength of Materials?

The prerequisite for Strength of Materials at most colleges and universities is a course in Statics: the study of forces acting 
in equilibrium on rigid bodies. Bodies are solid objects, like steel cables, gear teeth, timber beams, bones, and axle shafts; 
rigid means the bodies do not stretch, bend, or twist; and equilibrium means the rigid bodies are not accelerating. Most 
problems in a Statics textbook also assume the rigid bodies are stationary. These assumptions do not match reality perfectly,
but they make the math easier. This model is close enough to reality to be useful for many practical problems.

In Strength of Materials, we keep the assumptions of bodies in equilibrium, but we drop the “rigid” assumption. Real cables
stretch under tension, real floor joists bend when you walk across a wood floor, real bones flex when you move, and real 
axle shafts twist under torsional load.

Strength of Materials is challenging because the topics are cumulative and highly interconnected. If you miss an early topic,
you will not understand later topics.
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Introduction to Strength of Materials

This table lists Strength of Materials topics, and shows which chapters use each topic. You can see how interconnected the 
topics are. Some topics are only used in one chapter, while others are used in multiple chapters.

Strength of Materials is one of the most useful courses in an Engineering Technology education. It is the foundation for 
courses such as Structural Analysis and Machine Elements.

To be successful in a Strength of Materials course, you need the following:

Attention to Detail. Solve every problem methodically. Make your step-by-step solution easy for the reader (the 
grader) to understand, with the final solution at the bottom. Start by listing what you know, such as dimensions and 
materials properties. Next, identify an algebraic equation that includes what you know and the unknown variable.

Algebra. Solve the problem algebraically (using symbols) before introducing numbers and units.

Unit Conversions. Use the Factor-Label Method of Unit Conversion, the standard in Engineering and Chemistry. This 
method is explained in detail in Chapter 1. The convention in physics classes is to convert everything into SI units, 
plug numbers into the equation, and hope the units work out. In engineering and chemistry, we introduce the actual 
units into the equation, and add the unit conversions at the end of the equation, because real objects are dimensioned in
multiple units. For example, in the U.S., steel beam lengths are in feet, while their depths are in inches; in Canada, 
steel beam lengths are in meters, depths are in millimeters. You might be able to convert inches to feet in your head, 
but it is easy to make mistakes when the unit is raised to an exponent (converting in.3 to ft.3 or mm4 to m4), so use the 
Factor-Label Method and avoid simple mistakes.

Strong Work Ethic. If you copy someone else’s homework solutions instead of working them out, you will fail the 
exams, and you will have to repeat the course. The only way to learn this material is by practicing. For every hour of 
class time, expect to spend three to five hours doing homework. A good estimate is 10% of the learning occurs in the 
classroom; 90% of the learning occurs while you are solving the problems. Start the homework the same day as class 
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Introduction to Strength of Materials

(while your memory is fresh), work with other students in study groups, go to the professor’s office hours if you do 
not understand something, and turn in every homework assignment on time.

Engineering Paper. It comes in light green or light yellow, with a grid printed on the back. Write on the front only; the 
printed grid on the back side helps you align graphics and text. With engineering paper, you can sketch beam problems
to scale. The graphical result will tell you if the calculated numbers make sense.

Studying for Exams

High school students commonly believe that the best way to study for an exam is to reread the notes, and maybe skim the 
book. Educational research shows that this strategy does not really work. The most effective approach is to practice what 
you will actually do during an exam. If a history exam requires you to write what you know about a particular topic in 
history, then do that as practice, with the book closed. Once you are done, open the book and check what you missed. In 
Strength of Materials, the exams involve problem-solving, so the most effective exam preparation strategy is to solve 
similar types of problems. You can solve your homework problems again, then check the answers. This book includes many
dozens of example problems, which you can work out, then check the answers.

16



Chapter 1: Unit Conversions

Chapter 1: Unit Conversions
Strength of Materials involves solid parts that are loaded in bending, torsion, tension, or compression. These solid parts 
have dimensions with units, and the applied loads, applied torques, and resultant stresses also have units. We need a 
systematic, organized way to resolve the units so that the answer is in the correct units and all other units cancel. The 
simplest and most reliable approach is the Factor-Label Method, which is easier to debug than other methods. It tells you 
whether you have made an algebraic mistake, because if you have, in most cases the units come out wrong.

The Factor-Label Method of Unit Conversion

In Engineering disciplines, we use the three-step Factor-Label Method of Unit Conversion to solve algebraic problems with 
mixed units. Multiplying a mathematical expression by 1 does not change its value; we can use this approach to convert 

units. For example, 1ft.=12 in. , therefore multiplying a mathematical expression by 
1ft.

12 in.
 does not change the value of 

the expression. Follow these three simple steps:

Step 1 Write the algebraic equation so the desired quantity is on the left of the equals 
sign, and an algebraic expression is on the right of the equals sign.

Step 2 Draw a horizontal line on the page, and enter numbers and units above and 
below the line according to the algebraic expression.

Step 3 Draw a vertical line to show the separation between each unit conversion, and 
enter all unit conversions necessary to solve the problem. If the unit is raised to a 
power, then the conversion factor and unit must be raised to that power. Consider 
memorizing the most common conversion factors, like the ones at the right. See 
Appendix A for more unit conversions and metric prefixes, and Appendix B for 
materials properties such as thermal expansion coefficient and Young's modulus. Table
B1 gives these properties in U.S. Customary units, while Table B2 gives them in S.I. 
units.

The units in the final answer must appear in the equation, and all other units must cancel.

1ft. = 12 in.
1 m = 100cm
1cm = 10mm
1 kip = 103 lb.

1 Pa = 1N /m2

1 N = 1kg⋅m /s2

Metric prefixes
milli- (m) = 10−3

centi- (c) = 10−2

kilo- (k) = 103

Mega- (M ) = 106

Giga- (G) = 109

Example #1 – Area of a rectangle

The area of a rectangle is A=b⋅h , as shown in Appendix C. Given a base b=83in.  and a height h=45ft. ,
calculate the area in square feet.

Step 1 The algebraic equation does not need to be manipulated.

Step 2 Draw a horizontal line. Enter 83 in. and 45 ft. in the 
numerator.

A=b⋅h=83in.⋅45 ft.

Step 3 We want to eliminate inches to obtain a final result in
square feet. Therefore, put 12 inches in the denominator of 
the unit conversion, and 1 ft. in the numerator.

A=b⋅h=83in.⋅45ft.∣ ft.
12 in.

=311.25ft.2

17
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Chapter 1: Unit Conversions

Example #2 – Unit conversion for stress in SI units

Stress is force divided by area. If the stress is 1 N/mm2, what is the stress in MPa?

Step 1 There is no algebra to solve here because we are converting one unit to another.

Step 2 Draw a horizontal line. Enter 1 N in the numerator, 
and mm2 in the denominator. 

1 N
mm2

Step 3 A pascal is defined as Pa=N/m2, so enter Pa in the 
numerator. Instead of writing in N/m2 the denominator, put 
N in the denominator and m2 in the numerator.

1 N

mm2∣Pa m2

N

Now enter the unit conversions to eliminate the two area 
terms: m2 and mm2. There are 103 mm in a meter, so use 
parentheses to square the number and the unit.

1 N
mm2∣Pa m2

N ∣(103mm)2

m2

Finally, 1MPa=106Pa. Put MPa in the numerator and 106 Pa 
in the denominator. If you write the equation without  

numbers, it looks like 
N

mm2∣Pa m2

N ∣mm2

m2 ∣MPa
Pa

. Cross out

duplicate terms, and all terms cancel except for MPa. If you 

write the equation without units, it looks like 
1∣(103)2∣106

.

1 N
mm2∣Pa m2

N ∣(103mm)2

m2 ∣MPa
106 Pa

N
mm2∣Pa m2

N ∣(mm)2

m2 ∣MPa
Pa

Solving the equation with numbers and units, we get
1N /mm2=1 MPa . This is a useful conversion factor.

1 N
mm2∣Pa m2

N ∣(103mm)2

m2 ∣MPa
106 Pa

=1MPa

Example #3 – Thermal expansion

Deflection due to thermal expansion is δ=α⋅L⋅ΔT . The upper-case Greek letter 
delta means “change”, so ΔT  means “change in temperature.” An 8 ft. long bar at 
70°F has a thermal expansion coefficient of α=5×10−6 in./ in.°F  How hot is the bar
when it expands 0.060 in.?

Step 1 Use ΔT=T 2−T 1  to rewrite the equation 
algebraically and solve for T2.

δ=α⋅L⋅ΔT=α⋅L(T 2−T 1)

T 2−T 1=
δ
αL  → T 2=T 1+

δ
αL

Step 2 Enter 70°F, then draw a horizontal line. Enter 0.06 
in. in the numerator. Since the units for α are a fraction, 
enter 5×106 in.  in the denominator and in.°F  in the 
numerator. Enter 8 ft. in the denominator.

T 2=70 ° F + 0.06 in. in.°F

5×10−6 in. 8ft.

Step 3 Convert feet to 12 inches so the length units to 
cancel, and the result is in °F. T 2=70 ° F + 0.06 in. in.°F

5×10−6 in. 8ft.∣ ft.
12 in.

=195° F
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Chapter 1: Unit Conversions

Example #4 – Unit conversion for stress in US Customary units

Stress is force divided by area: σ= P
A

. Given a force P = 7000 lb. acting on an area A = 3 ft.2, calculate the stress in units 

of pounds per square inch (psi).

Step 1 The equation does not need to be manipulated.

Step 2 Draw a horizontal line. Enter 7000 lb. in the 
numerator, and 3 ft.2 in the denominator.

σ= P
A
=7000 lb.

3ft.2

Step 3 The stress is in units of pounds per square foot. There
are 12 inches in a foot, but we need to convert square feet, 
so square the number and the unit: (12 in.)2 . Square feet 
cancel, and the answer is in pounds per square inch, also 
written psi.

σ= P
A
=7000 lb.

3ft.2 ∣ ft.2

(12 in.)2
=16.2lb.

in.2 =16.2 psi

Example #5 – Tensile bar

A steel tensile bar stretches an amount δ= P⋅L
A⋅E

 where P is the applied load, L is the length of 

the bar, A is the cross-sectional area, and E is Young’s Modulus. The bar has a circular cross 
section. Given a load of 30 kN, a length of 80 cm, a diameter of 6 mm, and a Young’s Modulus
of 207 GPa (from Appendix B), calculate the deflection, δ, in millimeters.

Step 1 In math class, the area of a circle is given by
A=π r2 . In real life, we measure diameter using calipers; it

is much easier to measure a diameter than a radius on most 
objects. Convert radius to diameter, and the area equation 
becomes more useful. This is a good equation to memorize. A=π r2=π ( d

2 )
2

=πd 2

4
=π

4
d 2

Combine the two equations to obtain a single algebraic 
equation.

δ= P⋅L
A⋅E

= 4 P L
πd 2 E

Step 2 Draw a horizontal line and enter the numbers and 
units.

δ= 4⋅30 kN⋅80cm
π (6mm)2 207GPa

Step 3 The SI unit of stress or pressure is the pascal, where

Pa=N
m2 , so GPa= 109 N

m2 . Since 1kN=103 N , we can 

write GPa=
106 kN

m2 . Three conversion factors are needed: 

one to cancel GPa and kN; a second to cancel mm2 and m2; 
and a third to put the final answer in mm.

δ= 4⋅30 kN⋅80 cm
π(6 mm)2 207GPa∣GPa m2

106kN ∣(103 mm)2

m2 ∣10 mm
cm

=4.1 mm
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Chapter 1: Unit Conversions

Example #6 – Weight of a steel bar in US Customary units

The weight of a solid object is the specific weight (Greek letter gamma, γ ) of the material 
times the volume of the object: W=γV . The volume of a rod, pipe, or bar is the cross-
sectional area times the length: V=A L . Calculate the weight of a 2 inch diameter, 3 foot long 
bar of steel. From Appendix B, the specific weight of steel is 0.284 lb./in.3 

Step 1 Combine the two equations to solve for weight: W=γ A L . Since the rod is round, the 

cross-sectional area is A=π
4

d2
, therefore W=γπ d 2 L

4

Step 2 Draw a horizontal line and enter the numbers and 
units. W=γπ d 2 L

4
=0.284 lb.

in.3
π(2 in.)23ft.

4

Step 3 The only unit conversion is feet to inches.
W=γπd 2 L

4
=0.284 lb.

in.3

π(2in.)2 3ft.
4 ∣12 in.

ft.
=32.1 lb.

If the steel bars in Example #6 are sold on pallets with a 500 lb. load capacity, how many bars can you stack on a pallet? 

Divide the load capacity by the weight of one bar: 
500 lb.
pallet

bar
32.1 lb.

=15.6 bars/pallet . The math is fine, but does the answer 

make sense? You're not going to ship 6/10 of a bar to a customer...so the answer is 15 bars/pallet.

Example #7 – Weight of a steel pipe in SI units

Calculate the weight of a 2 meter long steel pipe having an outside diameter of 5 cm and an
inside diameter of 4 cm. From Appendix A, the acceleration of gravity is g=9.81m/s2 . 
From Appendix B, the density of steel is 7.85 g/cm3 

Step 1 From Appendix C, the area of a hollow circle is 
π
4
(d o

2−d i
2) . From the previous 

example problem, we know that W=γ A L , and specific weight is density times gravity:

γ=ρg , so the weight of the pipe is W=ρ g A L=
ρ gπ(d o

2−d i
2) L

4
.

Step 2 Draw a horizontal line and enter the 
numbers and units. W=

ρ g π(do
2−d i

2)L
4

=7.85g

cm3

9.81m

s2

π[(5cm )2−(4cm )2 ]2 m
4

Step 3 The SI unit of weight is the newton:

N=kg m

s2 .
W=7.85 g

cm3

9.81 m
s2

π[(5cm )2−(4cm )2]2 m
4 ∣ kg

103g∣100cm
m ∣N  s2

kg m
=109 N

Notice the unit “g” for grams and the term “g” for gravity. In science and engineering, we tend to use roman type for units, 
and italic type for variables. In friction problems using SI units, capital letter N is used as a unit and as a variable (“N” 
stands for newtons and “N” stands for normal force).
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Chapter 1: Unit Conversions

Example #8 – Material removal percentage

A 50 mm thick wood board is planed to a thickness of 38 
mm. Calculate how much material was removed, in percent.

Calculate the percent change by subtracting the initial value 
from the final value, then dividing by the initial value. 

This method works whether you are calculating thickness change, weight change, price change, or any other kind of 
change. The word “percent” means “per hundred”, so a result of 0.36 is 36%.

t f− t o

t o

= 38mm−50mm
50mm

=−0.24 or −24%  The minus sign means the value decreased.

Example #9 – Shear stress in a lap joint

Two pieces of carbon fiber composite are glued together as a lap joint. 

Shear stress is τ= P
A

, where A is the overlapped area.

If the glue has a shear strength of 1.2 ksi and the joint is loaded with a shear load P=1700 lb. , what is the minimum 
glued surface area required for a good bond?

Solve algebraically, and split ksi into 
kips

in.2 .  Minimum surface area A= P
τ
=1700lb. in.2

1.2 kips∣ kip
1000lb.

=1.42in.2

Native Units

Every example problem in this book is solved entirely within the same unit system. Converting between unit systems 
introduces round-off error, so it is best to solve problems in their native units. Do not mix US Customary and SI units in the 
same problem.

Factor of Safety

In engineering design, we like to use a Factor of Safety to prevent failure. For example, the Factor of Safety for a structure 

can be expressed as F.S.= Load that a structure can support
Actual load applied to a structure

. In Example #9, we calculated the glued surface area required

to support the load of 1700 lb. Using F.S.=1.5 , the load carrying capacity would be 1.5×1700lb.=2550lb. , and the 

required surface area would be 2550 lb.  in.2

1.2 kip∣ kip
1000 lb.

=2.13in.2

Signifcant Digits and Engineering Notation

Properties of engineering materials, such as strength and density, are usually accurate to only 2 or 3 significant digits. In this
textbook, answers are rounded to 3 significant digits after running the calculations. If you round intermediate results, the 
final answer may be off by several percent. This rounding error increases if variables are raised to exponents greater than 1. 
For example, the volume V of a cube is related to length of each side s as V= s3 . If the measurement of s is off by 5%, then
the calculated volume will be V=(1.05 s)3=1.16 s3 , an error of 16%.

In science classes you have seen scientific notation, where a number like 42,500,000 is easier to write as 4.25×107  and 
0.000648 is easier to write as 6.48×10−4 . Scientific notation puts one nonzero digit to the left of the decimal and the 
remaining digits to the right of the decimal, followed by some power of 10. Engineering notation is similar, except the 
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Chapter 1: Unit Conversions

power of 10 is a multiple of 3. This means that 42,500,000 is written as 42.5×106  and 0.000648 is written as 648×10−6 . 
The advantage of engineering notation is that most SI prefixes are tied to 10 raised to some multiple of 3: kilo- is 103, mega-
is 106, giga- is 109, etc. When a number is written in engineering notation, you can tell instantly that 42.5×106 Pa  is 42.5 
MPa; 648×10−6m  is 648 µm. The SI prefixes used in this book are listed in Appendix A.

The materials properties listed in Appendix B are presented in engineering notation. The US Customary values in Table B1 
are in kips per square inch, where 1 kip is 103 lb. Young's modulus and shear modulus are given in 106 psi, while thermal 
expansion values are in 10-6 in./in.°F. The corresponding SI values in Table B2 are in MPa, GPa, and 10-6 mm/mm°C.

22



Chapter 2: Stress and Strain

Chapter 2: Stress and Strain
Normal Stress and Strain

The words “stress” and “strain” are used interchangeably in popular culture in a psychological 
sense: “I’m feeling stressed” or “I’m under a lot of strain.” In engineering, these words have 
specific, technical meanings. If you tie a steel wire to a hook in the ceiling and hang a weight on 
the lower end, the wire will stretch. Divide the change in length by the original length, and you 
have the strain in the wire. Divide the weight hanging from the wire by the wire’s cross sectional 
area, and you have the tensile stress in the wire. Stress and strain are ratios.

Tensile stress in the wire is the load divided by the cross-sectional area of the wire. Since the 
loading direction is perpendicular, or normal, to the cross-sectional area, this type of stress is called
normal stress.

The symbol for normal stress is σ, the lower case Greek letter sigma. If the weight is 25 lb. and the cross-sectional area of 

the wire is 0.002 in.2, then the stress in the wire is σ=
W
A
= 25 lb.

0.002 in.2
=12,500

lb.

in.2
=12,500 psi .

The symbol for strain is ε, the lower case Greek letter epsilon. If the original length of the wire L=40in.  and the change in

length ΔL=0.017 in.  (also written δ=0.017 in. ), then strain ε=Δ L
L
= δ

L
=0.017 in.

40in.
=0.000425 . This is a small number, 

so sometimes the strain number is multiplied by 100 and reported as a percent: 0.000425=0.0425% . You may also see 
strain reported in microstrain: 0.000425×106=425 microstrain = 425 μstrain. Strain is usually reported as a percent for 
highly elastic materials like rubber.

Example #1 – Strain in a wire

A 36 inch long copper wire is stretched to a total length of 36.05 inches. What is the strain?

Solution The change in anything is the final value minus the initial value. Here, the change in length is the final length 

minus the initial length: ΔL=L f−Lo=36.05 in.−36.0in.=0.05in. . Strain is ε=Δ L
L
=0.05in.

36.0in.
=0.0014=0.14% . 

If we hang a bucket from the wire and gradually fill the bucket with water, the weight will gradually increase along with the
stress and the strain in the wire, until finally the wire breaks. We can plot the stress vs. strain on an x-y scatter graph, and 
the result will look like this:
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Chapter 2: Stress and Strain

This graph shows the stress-strain behavior of a low-carbon steel. Stress is in units of ksi, or kips per square inch, where
1 kip=103 lb.  (1 kilopound). The points to the left of the red dashed line are so close together that they smear into a line. 
This straight part of the stress-strain curve is the elastic portion of the curve. If you fill the bucket with only enough water to
stretch the wire in the elastic zone, then the wire will return to its original length when you empty the bucket.

We can change the range of the strain axis from 0.0-0.2 to 0.000-0.002, to show the elastic data only:

This graph shows the leftmost 1% of the previous graph. The dashed red line is in the same position on both graphs. Now 
the individual data points are visible, and the curve is almost perfectly straight up, to a strain of about 0.0018. The straight 
line has a slope, called Young’s Modulus,* or Elastic Modulus, E. The linear relationship between force and deflection was 
discovered by Robert Hooke in 1660, and is called Hooke's Law.

The slope of a straight line is the rise over run, so within this elastic zone, E= σ
ε

. Since 

strain is unitless, Young’s modulus has the same units as stress. Young’s modulus is a 
mechanical property of the material being tested: 30×106 psi or 207 GPa for steels,
10×106 psi  or 70 GPa for aluminum alloys. It is a measure of the stiffness of the 

material. See Appendix B for materials properties of other materials.

Example #2 – Stress/strain relationship

What tensile stress is required to produce a strain of 8×10-5 in aluminum? Report the answer in MPa.

Solution Aluminum has a Young’s modulus of E = 70 GPa. Rewrite E= σ
ε

, solving for stress:

σ=E ε=8×10−5⋅70 GPa∣ 103 MPa
GPa

=5.6 MPa

* Named for Thomas Young, an English physics professor, who defined it in 1807.
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Chapter 2: Stress and Strain

This cartoon of a stress-strain curve illustrates the elastic and
plastic zones. If you hang a light weight to the wire hanging 
from the ceiling, the wire stretches elastically; remove the 
weight and the wire returns to its original length. Apply a 
heavier weight to the wire, and the wire will stretch beyond 
the elastic limit and begins to plastically† deform, which 
means it stretches permanently. Remove the weight and the 
wire will be a little longer (and a little skinnier) than it was 
originally. Hang a sufficiently heavy weight, and the wire 
will break.

Two stress values are important in engineering design: yield 
strength and ultimate tensile strength. The yield strength, σYS,
is the limit of elastic deformation; beyond this point, the 
material “yields,” which means it permanently deforms.

The ultimate tensile strength, σUTS (also called tensile strength, σTS) is the highest stress value on the stress-strain curve. The
rupture strength is the stress at final fracture; this value is not particularly useful, because once the tensile strength is 
exceeded, the metal will break soon after. Young’s modulus, E, is the slope of the stress-strain curve before the test 
specimen starts to yield. The strain when the test specimen breaks is also called the elongation.

Many manufacturing operations on metals are performed at stress levels between the yield strength and the tensile strength. 
Bending a steel wire into a paperclip, deep-drawing sheet metal to make an aluminum can, or rolling steel into wide-flange 
structural beams are three processes that permanently deform the metal, so σYS<σApplied . During each forming operation, 
the metal must not be stressed beyond its tensile strength, otherwise it would break, so σYS<σApplied<σUTS . Manufacturers 
need to know the values of yield and tensile strength in order to stay within these limits.

After they are sold or installed, most manufactured products and civil engineering structures are used below the yield 
strength, in the elastic zone.* In this textbook, almost all of the problems are elastic, so there is a linear relationship between 
stress and strain.

Take an aluminum rod of length L, cross-sectional area A, and pull on it with a load P. The rod 
will lengthen an amount δ. We can calculate δ in three separate equations, or we can use algebra 

to find a simple equation to calculate δ directly. Young’s modulus is defined as E= σ
ε

. 

Substitute the definition of stress, σ= P
A

, and E= σ
ε
= P

A⋅ε
. 

Substitute the definition of strain, ε= δL , and E= P
A⋅ε

= PL
Aδ

.

Rewrite this equation to solve for the change in length of the rod: δ= PL
AE

.

† Here, the word plastic is used in its 17th century sense “capable of being deformed” rather than the 20th century definition “polymer.”
* One exception is the crumple zones in a car. During an auto accident, the hood and other sheet metal components yield, preventing 

damage to the driver and passengers. Another exception is a shear pin in a snow blower. If a chunk of ice jams the blades, the shear 
pin exceeds its ultimate strength and breaks, protecting the drivetrain by working as a mechanical fuse.
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Chapter 2: Stress and Strain

Example #3 – Axial stretching

A 6 foot long aluminum rod has a cross-sectional area of 0.08 in.2. How much does the rod stretch under an axial tensile 
load of 400 lb.? Report the answer in inches.

Solution The word axial means along the axis so an axial tensile load is pulling along the length of the rod. Sometimes it is
called the longitudinal direction rather than the axial direction. Aluminum has a Young’s modulus of E=10×106 psi .

Deflection δ=
PL
AE
= 400 lb. 6ft.

0.08 in.2
in.2

10×106lb.∣12in.
ft.

=0.036 in.

Note Young's modulus is in units of psi, but when you write it in an equation, split up the lb. and the in.2 between 
numerator and denominator to avoid unit confusion.

Sign Convention

A load that pulls is called a tensile load. If the load pushes, we call it a compressive load. The 
equations are the same: compressive stress σ=P /A , compressive strain ε=δ/ L , and 
compressive deflection δ=PL/AE . Tensile stress, compressive stress are both normal stress, 
because the load is perpendicular to the area it is acting on. We need a way to differentiate 
between compression and tension, so we use a sign convention. Tensile loads and stresses are 
positive; compressive loads and stresses are negative. Increases in length are positive; 
decreases in length are negative.

Example #4 – Compressive stress, strain, and defection

A 70 kN compressive load is applied to a 5 cm diameter, 3 cm tall, steel cylinder. Calculate stress, strain, and
deflection.

Solution The load is –70 kN, so the stress is . σ= P
A
= 4P

π d 2=
4(−70kN)
π(5cm )2 ∣MPa m2

103 kN ∣(100 cm)2

m2 =−35.6 MPa  

The negative sign tells us the stress is compressive. Young's modulus E=σε . Rewrite the equation to solve 

for strain: ε= σE
=−35.6 MPa

207GPa ∣ GPa

103 MPa
=−0.000172

Strain is defined as ε= δL . Rewrite to solve for deflection: δ=ε L=−0.000172⋅3cm∣10mm
cm

=−0.0052 mm . The 

negative signs tell us that the cylinder is shrinking along the direction of the load.
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Chapter 2: Stress and Strain

Shear Stress and Strain

The stress in the previous examples is called “normal stress” because the stress acts on an area 
that is normal, or perpendicular, to the direction of the applied load. Imagine a tall stack of coins
glued together on their faces. If you pull on the ends of the stack, the glue will experience a 
stress that is normal (perpendicular) to the face of each coin. If the glue is thick and tacky, 
maybe it will tend to stretch, and you can see the coins gradually pull apart along the direction of
the applied load. If the load is 100 lb. and the face area of each coin is 1 in.2, then the normal 
stress is 100 psi.

Next, imagine taking two coins that are glued together on their faces, and try to slide them apart.
Now the stress is acting parallel to the glue instead of perpendicular to it. This stress is called 
shear stress, symbolized by the lower case Greek letter tau, τ. The units are the same as for 
normal stress because shear stress is also force divided by area. If the load is 25 lb. and the face 
area of each coin is 1 in.2, then the shear stress is 25 psi.

Sheet metal joints are often manufactured this way, with adhesive bonding 
two lapped sheets to form a lap joint. The load is parallel to the area under 
stress (the adhesive in the shear plane between the two lapped panels). Joints 
can be designed to put the adhesive in either tension or in shear; typically, 
the shear strength of an adhesive is not the same as the strength in tension.

For example, cyanoacrylate adhesive (“superglue”) is stronger in tension than in shear. An adhesive lap joint will fail when 
the shear strength of the adhesive is exceeded.

If the sheet metal is held together with rivets instead of glue, then
each rivet is loaded in shear across its cross-section. The shear 
plane passes through the rivet where the two sheets meet. In a 
bolted joint, use a bolt with a smooth shank instead of a bolt that 
is threaded along its entire length. This way, the shear plane can 
pass through the smooth shank, which has a larger cross-

sectional area than the root of a thread, and therefore can handle a higher applied load. Later in the book, we will see that 
the thread root also acts as a stress concentration site – yet another reason for keeping threads out of shear planes.

One way to produce holes in sheet metal is by punching them out with a punch and die set. The punch shears the sheet 

metal, so we can use shear stress calculations to figure out the stress in the sheet metal, τ= P
A

, where P is the force of the 

punch and A is the sheared area (the perimeter of the shape that is punched times the thickness of the sheet metal t).

Example #5 – Punched sheet metal

A 3 mm thick aluminum sheet is cut with a 4 cm diameter flat-
bottomed round punch. If the punch exerts a force of 6 kN, what is the 
shear stress in the sheet? Report the answer in MPa.

Solution The punch will create a round slug, where the cut edge is 
around the circumference of the slug. Think of the cut edge as the wall 
of a cylinder with a height of 3 mm and a diameter of 4 cm. The area 
equals the circumference of the circle times the thickness of the sheet 
metal: A=π dt .

τ= P
A
= P
π dt

= 6kN
π⋅4cm⋅3 mm∣MPa m2

103 kN∣100 cm
m ∣103 mm

m
=15.9 MPa
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Chapter 2: Stress and Strain

A process engineer in a stamping plant will rewrite this equation to solve for P in order to find out whether a press is 
capable of punching out blanks of a given size in a sheet metal of known shear strength.

Shear stress controls the design of torsion members. Think of a 
round shaft as a series of disks glued together on their faces. If 
you twist the shaft with a torque T, the glue will be loaded in 
shear because the load is parallel to the face of each disk.

Consider a rectangular block loaded in shear. The block will 
distort as a parallelogram, so the top edge moves an amount δ. 
Divide the distortion by length L perpendicular to the distortion,

and you have the shear strain, γ= δL , where γ  is the lower-

case Greek letter gamma. Like normal strain, shear strain is unitless. We can calculate the angle formed between the initial 

and loaded shapes of the block using trigonometry: tan ϕ= δ
L .The strain in the cartoon is exaggerated. For metals, 

concrete, wood, and most polymers, angle ϕ  is so small that tan ϕ≈ϕ  if we measure the angle in radians, therefore

ϕ≈γ= δ
L .

Factor of Safety

In Chapter 1, we defined the Factor of Safety in terms of forces: F.S.= Load that a structure can support
Actual load applied to a structure

. We can also 

define the Factor of Safety in terms of stresses: F.S.= Stress that a structure can support
Actual stress applied to a structure

. Typically we use the yield 

strength as the stress in the numerator, so F.S.=
σYS

Applied stress
. For example, if a steel rod loaded in tension develops a 20 

ksi tensile stress, and its yield point is 35 ksi, then F.S.= 35ksi
20ksi

=1.75 . The steel rod is 75% stronger than it needs to be.

If a Factor of Safety is less than 1, then the part will fail, by definition.

Key Equations

Starting with this chapter, you will find a list of Key Equations at the end of each chapter. You can save time on homework 
problems by keeping your own list of equations in a handy place, such as a notebook.

Normal stress in a tensile or compressive member is the load divided by the cross-sectional area: σ= P
A

.

Normal strain is the change in length parallel to the load divided by initial length: ε=Δ L
L
= δ

L
.

Young's modulus is the ratio of stress over strain within the elastic zone of the stress-strain diagram: E= σ
ε

The change in length of a tensile or compressive member is derived from the three previous equations: δ= PL
AE

Shear stress is the load divided by the area parallel to the load: τ= P
A

.

Shear strain is the deformation parallel to the load divided by initial length perpendicular to the load: γ= δL .

Factor of Safety is the load or stress capacity of a structure divided by the applied load or stress.
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Chapter 3: Poisson's Ratio and Thermal Expansion
Poisson's Ratio

Stretch a thick rubber band, and you notice the material gets thinner as it gets longer. This effect 
occurs in metals, plastics, concrete, and many other materials. We can predict how much the 
thickness changes with a materials property called Poisson’s ratio,* which relates the strain along the 
tensile axis with the strain in the transverse (crosswise) direction. The symbol for Poisson’s ratio is ν,
the lower case Greek letter nu, which looks similar to the lower case Roman letter v. Poisson’s ratio 

is ν=
−εtransverse

εlong

, where εtransverse  is the strain in the transverse (crosswise) direction, and εlong  is 

the strain along the longitudinal axis (also called εaxial ). The sign convention for strain is positive for
expansion, negative for shrinkage. Poisson’s ratio is 0.25 for steel, 0.33 for aluminum, and 0.10 to 
0.20 for concrete. We can calculate the change in length of a rod by taking the definition of strain,

εlong=
δlong

L
, and rewriting it as δlong=εlong L . In the same way, we can calculate the change in 

diameter by substituting εtransverse  for εlong , and diameter d for length L: δtransverse=εtransverse d .

Example #1 – Diameter shrinkage due to a tensile load

An aluminum rod has a cross-sectional area of 0.19635 in.2. An axial tensile load of 6000 
lb. causes the rod to stretch along its length, and shrink across its diameter. What is the 
diameter before and after loading? Report the answer in inches.

Solution The rod has a circular cross section, so the cross-sectional area before the rod is 

loaded is A= π
4

d 2
. Rewrite to solve for the initial diameter,

d=√ 4 A
π =√ 4⋅0.19635 in.2

π =0.50000 in. . When the rod is loaded, the axial strain is

εlong=
σ
E
= P

AE
= 6000 lb.

0.19635 in.2

in.2

10×106 lb.
=0.00306 .

Poisson’s ratio ν=
−εtransverse

εlong
, so εtransverse=−ν⋅εlong=−0.33⋅0.00306=−0.00101

The change in diameter is δtransverse=εtransverse⋅d=−0.00101×0.50000 in.=−0.000504 in.

The final diameter d f=d o+δtransverse=0.50000in.−0.000504 in.=0.4995 in.

In a civil engineering structure, a dimensional change of half a thousandth of 
an inch is insignificant, but in a machine it could affect performance. 
Imagine a machine part that slides in a slot: if the part is loaded axially in 
compression, Poisson’s effect could change a part that slides (slip fit) into a 
part that sticks (press fit).

You can feel the effect of Poisson's ratio when you insert a rubber stopper or 
a cork in a bottle. The Poisson's ratio of rubber is about 0.5, while cork is 
about 0.0. If you try to push a rubber stopper into the neck of a bottle, the 
material above the neck will shorten and thicken, making it difficult to insert 
into the bottle. The harder you push, the more the stopper will expand in the 
transverse direction, and this expansion is about 50% of the compression in

* Named for Siméon Poisson, a French mathematician and physicist.
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Chapter 3: Poisson's Ratio and Thermal Expansion

the axial direction. Natural cork is made from the bark of the cork oak tree, and does not expand transversely when you 
push on it. The only resistance comes from compressing the cork in the bottle neck, and friction.

Consider a block that is pulled in two directions by forces Px and Py. The strain in the

x direction due to the axial stress from Px is εx axial=
σ x

E . If Px is positive (tension), 

then the strain is also positive...the bar is stretching along the x axis due to the action 
of Px. However, tensile load Py is acting to shrink the bar in the x direction; the strain 

due to this transverse load is εx transverse=−
νσ y

E
. Add these two strains to find the 

total strain in the x direction, εx=
σ x

E
−
νσ y

E
= 1

E
(σ x−νσ y) .

Similarly, the total strain in the y direction is εy=
σ y

E
−
νσ x

E
= 1

E
(σ y−νσ x) .

Real blocks, of course, are three-dimensional. If the block is loaded in all three

directions, calculate the strain in the x, y, and z directions as εx=
1
E
(σ x−νσ y−νσ z) , εy=

1
E
(σ y−νσ x−νσ z) , and

εz=
1
E
(σ z−νσ x−νσ y ) .

Example #2 – Strains in a triaxially-loaded block

Calculate the strains in the x, y, and z directions for this steel block.

Solution First, calculate the normal stress in the x, y, and z directions as the 
force divided by the perpendicular surface that it acts on.

The stress in the x direction acts on the right face of the block, so the normal 

stress is σ x=
P x

Ax

= 3kN
2cm×4cm∣MPa m2

103 kN ∣(100 cm)2

m2 =3.75 MPa  where Ax is

the area perpendicular to load Px. The stress in the y direction acts on the top 
of the block, so the normal stress is

σ y=
P y

Ay

= 5 kN
2cm×3cm∣MPa m2

103kN ∣(100 cm )2

m2 =8.33 MPa .

The stress in the z direction acts on the front face of the block, so the normal stress is

σ z=
P z

Az

= −2 kN
3cm×4 cm∣MPa m2

103 kN ∣(100cm )2

m2 =−1.67MPa . The load and stress are negative because they are compressive.

Next, calculate the strains. Since the block is steel, Young's modulus is 207 GPa and Poisson's ratio is 0.25.

ε x=
1
E
[σ x−νσ y−νσz ]=

1

207×103 MPa
[3.75 MPa−0.25(8.33 MPa )−0.25 (−1.67 MPa)]=1.01×10−5

ε y=
1
E
[σ y−νσx−νσz ]=

1

207×103MPa
[8.33 MPa−0.25 (3.75 MPa )−0.25(−1.67MPa )]=3.77×10−5

ε z=
1
E
[σz−νσx−νσ y]=

1

207×103 MPa
[−1.67 MPa−0.25(3.75 MPa )−0.25(8.33 MPa )]=−2.26×10−5
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Thermal Expansion and Thermal Stress

Heat a piece of steel, wood, or concrete, and it expands. Cool the same piece, and it 
shrinks. Plot the strain as a function of temperature change, and for most materials, you 
get a relatively straight line. The slope of the line is called the thermal expansion 
coefficient, Greek letter α. It tells us how much strain we can expect for a given 
temperature change. From the graph, the slope α=ε/ΔT . The units of α are strain 

divided by temperature: 
in./ in.

°F
 or 

mm /mm
°C

, which we can write as °F-1 or °C-1. 

Substitute the definition of strain, ε=δ/ L , and we have α=
δ

L(ΔT ) . Rewrite the 

equation to solve for thermal deflection: δ=α L(ΔT ) .

The thermal expansion coefficient is a materials property; different materials expand at different rates. For example, 
aluminum expands about twice as much as steel for a given temperature change, because αAluminum=23×10−6°C−1  and
αSteel=12×10−6°C−1 . One reason we use steel as a reinforcement in concrete is αConcrete=11×10−6°C−1 , so the steel and 

concrete expand and contract at roughly the same rate. If the matrix and reinforcement in a composite expand at different 
rates, then the matrix and reinforcement may separate under repeated thermal cycles.

We define the change in temperature as the final temperature minus the original temperature: ΔT=T f−T o . If the material
is cooled from 70°F to 40°F, the change in temperature is ΔT=40 °F−70°F=−30 °F , a negative number. If the material is
heated from 70°F to 90°F, the change in temperature is ΔT=90 °F−70 °F=+20 °F , a positive number. The sign of ΔT  
tells you whether the material is heating up or cooling down.

Example #3 – Thermal expansion of a fagpole

A 5 m aluminum flagpole is installed at 20°C. Overnight, the temperature drops to -5°C. 
How much does the height change, in millimeters? What is the final height of the flagpole, 
in meters?

Solution First, calculate the change in length using δ=α L(ΔT ) . From the Appendix, the 

thermal expansion coefficient for aluminum is αAluminum=23×10−6 mm
mm °C

. Next, 

calculate the final length by adding the change in length to the original length.

Change in length δ=α L (ΔT )=23×10−6 mm
mm °C

5m(−5°C−20 °C)∣103 mm
m

=−2.88mm

The negative sign indicates the flagpole is getting shorter. Final length L f=L+δ=5 m−
2.88 mm∣ m

103 mm
=4.997 m .

Two cantilever beams made of different materials have a measurable gap between their 
ends. As the bars heat up, they grow towards each other and eventually meet if the 
temperature rises enough. Each bar has a different thermal coefficient of expansion. How 
do we calculate the temperature Tf at which they meet? Consider that the gap between the 
two bars equals δtotal=δsteel+δbrass . Substitute the equation for thermal expansion, and we 
get δtotal=αsteel Lsteel (ΔT steel )+αbrass Lbrass(ΔT brass) . The change in temperature is the same 
for both materials, so δtotal=ΔT (αsteel Lsteel+αbrass Lbrass) . Rewrite the equation to solve for

temperature change: ΔT=
δtotal

αsteel Lsteel+αbrass Lbrass
. 

The temperature change ΔT=T f−T o , so we can solve for the final temperature: T f=T o+
δtotal

αsteel Lsteel+αbrass Lbrass
.
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If the material is restrained from expanding or contracting while the temperature changes, 
then stress builds within the part. Consider a bar of steel embedded in two blocks of 
concrete. If the bar heats up, it will want to expand by an amount δ=α L(ΔT ) . However,
the blocks of concrete prevent the bar from expanding, by exerting a force P on the bar. 

We know from Chapter 2 that an axial load will cause a bar to deform an amount δ= PL
AE

.

However, the load P in this problem is compressive, so δ=−PL
AE

. Set the two deflections 

equal to each other, and α L(ΔT )=−PL
AE

. Length L cancels from both sides, so

α(ΔT )=−P
AE

. The thermal stress in the bar is σ thermal=
P
A

, so we have

α(ΔT )=
−σ thermal

E . Solve for thermal stress: σ thermal=−α E (ΔT ) . The thermal stress does not depend on the length of the

bar; it depends only on materials constants α and E and the temperature change.

Example #4 – Thermal stress in a wire

Two immovable concrete blocks are connected by a steel wire. At 72°F there is no stress in the
wire. If the wire cools from 72°F to 55°F, what is the stress in the wire?

Solution Find these steel properties in the Appendix: α=6.5×10−6 in./in.°F−1  and E=30×106 psi .

Thermal stress σ=−αE (ΔT )=−6.5×10−6 in.
in. °F

30×106 lb.
in.2

(55 °F−72 °F)
=3,315 psi

The positive sign indicates the wire is under a tensile stress. The wire cooled and wanted to shrink, but the concrete blocks 
prevented it from shrinking, leaving the wire in tension.

Example #5 – Force created by thermal stress

Two immovable concrete blocks are connected with a 2 inch by 2 inch square steel bar. 
At 72°F there is no stress in the bar. If the bar heats from 72°F to 102°F, what is the 
stress in the bar? How much force do the blocks exert on the bar?

Solution Find these steel properties in the Appendix: α=6.5×10−6 in./in.°F−1  and
E=30×106 psi .

Thermal stress σ=−α E (ΔT )=−6.5×10−6 in.
in. °F

30×106 lb.
in.2

(102°F−72°F )=−5,850 psi

The negative sign indicates the bar is under a compressive stress. The bar heated up and wanted to expand, but the 
concrete blocks prevented it from expanding, leaving the bar in compression. We can find the force exerted by the walls 

from the thermal stress: σ thermal=
P thermal

A
. Rewrite the equation to solve for force:

P thermal=σthermal A=−5,850 lb.
in.2

2 in.×2in.=−23,400lb. The negative sign shows that the force is compressive.
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Some thermal expansion problems require both the deflection and the stress equations. For 
example, if this cantilever beam heats up sufficiently, it will meet the right-hand wall. If the
temperature continues to rise, stress will build up in the beam. If you know the initial 
length, material, and temperatures To and T2 (but not temperature T1), how do you find the 
thermal stress? 

Step 1 Use the thermal deflection equation and the temperature change ΔT=T 1−T o  to 
figure out temperature T1.

Step 2 Use the thermal stress equation and the temperature change ΔT=T 2−T 1  to figure 
out σthermal at temperature T2.

Key Equations

Poisson's ratio is the decrease in transverse strain to the increase in longitudinal strain: ν=
−εtransverse
εlong

Calculate the strains in an elastic block loaded in the x, y, and z directions as εx=
1
E
(σ x−νσ y−νσ z) ,

εy=
1
E
(σ y−νσ x−νσ z) , and εz=

1
E
(σ z−νσx−νσ y ) . If a load does not exist in one of the directions, then the stress term 

for that direction is zero, and the equations become simpler.

Change in length due to a change in temperature is a function of the thermal expansion coefficient, the initial length, and the
change in temperature: δ=α L(ΔT )

Stress due to a change in temperature is a function of the thermal expansion coefficient, Young's modulus, and the change in
temperature: σ thermal=−α E (ΔT )
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Chapter 4: Pressure Vessels and Stress Concentrations
Thin-Walled Pressure Vessels

A pressure vessel is a container holding a fluid (liquid or gas) under pressure. Examples include carbonated beverage 
bottles, propane tanks, and water mains. Drain pipes are not pressure vessels because they are open to the atmosphere.

In a small pressure vessel such as a horizontal pipe, we can ignore the effects of gravity on the fluid. In the 
17th century, French mathematician and physicist Blaise Pascal discovered that internal fluid pressure 
pushes equally against the walls of the pipe in all directions, provided the fluid is not moving. The SI 
pressure and stress unit, the pascal (Pa), is named after Pascal because of his work with fluid pressure. The 
symbol for pressure is lower-case p, not to be confused with upper-case P used for point loads.

If the thickness of the wall is less than 10% of the internal radius of the pipe or tank, then the pressure vessel is described as 
a thin-walled pressure vessel. Because the wall is thin, the stress in the wall is nearly the same on the inside and outside 
surfaces of the wall. (Thick-walled pressure vessels have a higher stress on the inner surface than on the outer surface, so 
cracks form from the inside out.)

Imagine cutting a thin-walled pipe lengthwise through the 
pressurized fluid and the pipe wall: the force exerted by the fluid 
must equal the force exerted by the pipe walls (sum of the forces 
equals zero). The force exerted by the fluid is p⋅A= p di L  where 
A is the area that the pressure acts upon (the orange rectangle in the 
diagram), di is the inside diameter of the pipe, and L is the length of 
the pipe. The stress in the walls of the pipe is equal to the fluid 
force divided by the cross-sectional area of the pipe wall. This 
cross-section of one wall is the thickness of the pipe, t, times its 
length. Since there are two walls, the total cross-sectional area of 
the wall is 2 t L . The stress is around the circumference, also called

the hoop direction, so σ hoop=
p d i L

2 t L
=

p d i

2 t
. Hoop stress is 

independent of the length of the pipe.

Example #1 – Hoop stress in a pipe

A pipe with a 15 in. outside diameter and a 14 in. inside diameter carries pressurized 
water at 110 psi. What is the hoop stress?

Solution First, calculate the wall thickness, t. From the diagram, see that d o=d i+2 t , 

therefore t=
d o−d i

2
=15 in.−14 in.

2
=0.5 in.

Next, check if the pipe is thin-walled. The ratio of the pipe wall thickness to the internal 

radius is 
t
ri

= 0.5 in.
1
2
(14 in.)

=0.071<0.10
, so the pipe is thin-walled.

Hoop stress σhoop=
p d i

2 t
=110 psi⋅14in.

2⋅0.5 in.
=1,540 psi
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What if the pipe is capped? If the cap were loose, pressure would push the cap off the end. If the
cap is firmly attached to the pipe, then a stress develops along the length of the pipe to resist 
pressure on the cap. Imagine cutting the pipe and pressurized fluid transversely. The force 
exerted by the fluid equals the force along the length of the pipe walls.

Pressure acts on a circular area of fluid, so the force exerted by the fluid is P fluid=p⋅A= p π
4

d i
2

. The cross-sectional area of

the pipe wall A= π
4

d o
2−π

4
d i

2=π
4
(d o

2−d i
2) . We can estimate the cross-sectional area of a thin-walled pipe pretty closely by 

multiplying the wall thickness by the circumference, so A≈π di t  . The stress along the length of the pipe is

σ long=
P fluid

Apipe

=
pπ d i

2

4π di t
. Simplify by canceling π and one of the diameters: σ long=

pd i

4 t
.

In a thin-walled pipe, hoop stress is twice as large as longitudinal stress. If the pressure in a pipe exceeds the strength of the 
material, then the pipe will split along its length (perpendicular to the hoop direction).

Does the shape of the cap affect the longitudinal stress in the 
pipe? No, because only the cross-sectional area of the pipe 
matters. Typically, pressure vessels have concave or convex 
domes, because flat caps tend to deflect under pressure, but 
the shape has no effect on longitudinal stress in the pipe 
walls.

A welded steel outdoor propane tank typically consists of a tube with two
convex hemispherical caps (right). Hoop stress controls the design in the 
tube portion. Where the caps are welded to the tubes, longitudinal stress 
controls the design. If the steel is all the same thickness (and the welds 
are perfect), then the tank will fail in the tube section because hoop stress 
is twice the longitudinal stress. A spherical tank (far right) only has 
longitudinal stress, so it can handle twice the pressure of a tubular tank. 
Think of a spherical tank as two hemispheres welded together; the weld 
prevents the two halves from separating.

In conclusion, if you have a pipe or a cylindrical tank, use σhoop=
p d i

2 t
. If you have a spherical tank, use σ long=

pd i

4 t
.

The ASME Boiler Code recommends using an allowable stress σallowable=
1
4
σUTS  or σallowable=

2
3
σYS , whichever is smaller, 

for welded steel pressure vessels.

Example #2 – Wall thickness of a spherical tank

What is the minimum thickness of a spherical steel tank if the diameter is 10 feet, internal pressure is 600 psi, the tensile 
strength of the steel is 65ksi, and the yield strength of the steel is 30 ksi?

Solution First, calculate the allowable stress. Next, rewrite the stress equation for longitudinal stress (because this is a 
sphere, not a pipe) to solve for wall thickness.

Based on tensile strength, σ allowable=
1
4
σUTS=

65 ksi
4

=16.25ksi . Based on yield strength,

σ allowable=
2
3
σYS=

2⋅30ksi
3

=20 ksi ; therefore, use 16.25 ksi because it is the smaller number.

Longitudinal stress σ long=
p d i

4 t
. Rewrite the equation for thickness, t=

p d i

4σallowable

=600 psi⋅10ft
4⋅16.25 ksi ∣ ksi

103 psi∣12 in.
ft

=1.11in.
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The welds in real steel tanks contain defects, which reduce the strength of the welds. We can measure the strength of welded
joints in the lab and compare them with the strength of the base metal. If the strengths match, we say the joint is 100% 
efficient. The symbol for efficiency is the Greek letter eta, η .

Example #3 – Wall thickness of a spherical tank based on welded joint efciency

What is the minimum thickness of the spherical steel tank in Example #2 if the joint efficiency is 80%?

Solution Use the same equations as before, except the allowable stress is multiplied by the welded joint efficiency.

Longitudinal stress η jointσ long=
p d i

4 t
, therefore t=

p d i

4η jointσ allowable

= 600 psi⋅10ft
4⋅0.80⋅16.25 ksi∣ ksi

103 psi∣12 in.
ft

=1.38in.

Stress Concentration in Tension

Pull a solid bar in tension, and the tensile stress in the bar is uniform within 

the bar: σ=
P

Agross
 where Agross is the gross cross-sectional area of the bar. If

the bar has a hole in it, we would expect the stress to be higher because 

there is less material: σnet=
P

Anet
 where Anet is the net cross-sectional area 

of the bar (gross area minus the area of the hole). Experiments show the 
stress is not uniform within the remaining solid material; instead, it is 
highest next to the hole, and lower as you move away from the hole. We 
say that the stress is concentrated next to the hole.

The maximum stress adjacent to the hole is σmax=K σnet=K P
Anet

, where 

K is a stress concentration factor that depends on the size of the bar and the 
diameter of the hole. In general, the smaller the radius, the higher the stress.
For example, cracks have very high stress concentrations at their tips, 
exceeding the tensile strength of the material, even though the average 
stress in the part is below the yield strength. This is why cracks grow.

One way to prevent a crack from growing in a material is to drill a hole at its tip. The drilled hole has a larger radius than 
the crack tip, which reduces the stress to below the yield strength of the material, and the crack stops growing.

Stress concentrations can occur anywhere there is a change in geometry with a small radius, such as holes, fillets, and 
grooves. In the 1930s, M.M. Frocht* published a series of graphs relating K to the dimensions of the bar and hole (or fillet or
groove), and R.E. Peterson published scientific papers on fatigue cracks which start at stress concentrations. Peterson's book

* M.M. Frocht, “Photoelastic Studies in Stress Concentration,” Mechanical Engineering, Aug. 1936, 485-489. M.M. Frocht, “Factors of
Stress Concentration Photoelastically Determined", ASME Journal of Applied Mechanics 2, 1935, A67-A68.
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on stress concentration factors† is still in 
print.

This graph is based on Frocht's original 
work. Use a four-step process to solve 
stress concentration problems:

Step 1 Divide the hole diameter by the 
gross width of the bar to find the ratio
d /h gross .

Step 2 Find the value of K from the graph.

Step 3 Calculate the net cross-sectional 
area (gross cross-sectional area minus the 
cross-sectional area of the hole). The 
easiest way to find this value is to multiply 
the net width by the thickness.

Step 4 Calculate the maximum stress using

σmax=K P
Anet

Example #4 – Stress concentration from a drilled hole

A bar measuring 80 mm wide by 16 mm thick has a 20 mm diameter 
hole in the center. The tensile load on the bar is 900 N. Calculate the 
maximum stress in the bar due to the stress concentration. Report the 
result in MPa.

Solution Divide the hole diameter by the gross cross-sectional width

of the bar: 
d

h gross

= 20 mm
80 mm

=0.25 . Use the graph to find K≈2.36 . The net cross-sectional area of the bar is the net width 

times the thickness. The net width is the gross width minus the hole diameter: Anet=(80 mm−20 mm)16 mm=960mm2

Maximum stress is σmax=K
P

Anet

=2.36
900 N

960mm2∣MPa mm2

N
=2.2 MPa

Use a similar four-step process to solve stress concentration problems in tensile bars having fillets or semicircular grooves.

Step 1 Divide the groove or fillet radius by the net width of the bar to find the ratio r /hnet .

Step 2 Find the value of K from the graph on the following page. Be sure to use the correct curve!

Step 3 Calculate the net cross-sectional area at the groove or fillet.

Step 4 Calculate the maximum stress using σmax=K P
Anet

 For both types of tensile bar, Anet=hnet⋅t .

† Walter D. Pilkey, Deborah F. Pilkey, & Zuming Bi, Peterson's Stress Concentration Factors, 4th ed., Wiley, 2020.
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Example #5 – Stress concentration from grooves

A ⅛ in. thick, 2 in. wide bar has two semicircular 3/8 in. radius 
grooves. Find the maximum stress in the bar due to the stress 
concentration. Report the result in ksi.

Solution Net width hnet=2in.−2(0.375 in.)=1.25in.  

Calculate 
r

hnet

=0.375 in.
1.25 in.

=0.30 . From the graph below,

K≈1.82 . The net cross-sectional area is the net width times the 
thickness: Anet=1.25in.×0.125 in.=0.156 in.2 . Max. stress is

σmax=K
P

Anet

=1.82
1ton

0.156 in 2∣2 kips
ton

=23.3ksi
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Example #6 – Which is stronger: grooves or fllets?

What if the plate from Example #5 were machined to make a plate 
with fillets instead of grooves, using hnet=1¼ in. ?

Solution Since there is no change to hgross, hnet, Anet, r, and t, we 

know that 
r

hnet
 is still 0.30. From the graph, K≈1.58 . Now the 

maximum stress is K
P

Anet

=1.58
1 ton

0.156 in2∣2 kips
ton

=20.2 ksi

How much did the maximum stress change, as a percentage? Calculate change using 
Final value−Initial value

Initial value
 which in 

this case is 
20.2 ksi−23.3 ksi

23.3ksi
=−0.13=−13%  The negative sign means the maximum stress for the fillet plate is less 

than the maximum stress for the grooved plate.

What if we wanted to know the smallest allowable radius, given an allowable stress of 24 ksi? Rewrite σmax=K P
Anet

 as

K=
σmax Anet

P
=24 kip

in.2

0.156 in.2

1 ton ∣1 ton
2kip

=1.88  From the graph, 
r

hnet

≈0.07 , so r=0.07 hnet=0.07⋅1.25in.=0.088 in.

With holes, grooves, and fillets, we have seen that the smaller the radius 
the higher the stress, but failure can also occur because a radius is too big. 
For example, if a hole in a plate is so large that the net cross sectional area 
is very small, the plate could be weaker than a plate with a smaller hole.

Key Equations

Hoop stress in a pressure vessel is equal to the internal pressure times the inside diameter divided by twice the wall 

thickness: σhoop=
p d i

2 t
. This equation is used for pipes and cylinders.

Longitudinal stress in a pressure vessel is equal to the internal pressure times the inside diameter divided by four times the 

wall thickness: σ long=
pd i

4 t
. This equation is used for spherical pressure vessels.

For welded steel tanks, the ASME Boiler Code recommends using σall=
1
4
σUTS  or σall=

2
3
σYS , whichever is smaller, then 

multiply the allowable stress by the weld efficiency, ηweld .

Stress at a stress concentration is equal to the stress concentration factor times the average stress at the net cross-sectional 

area: σmax=K σnet=K P
Anet

. Use stress concentration graphs to find the value of K.
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Chapter 5: Bolted and Welded Joints
Bolted Lap Joints Loaded in Tension

Look at a steel bridge or steel skeleton of a building, and you see plates, 
columns, and beams. They intersect at joints, which transmit load from 
one member to the next. Large steel structures are typically bolted, 
riveted, or welded together. The strength of the joint may determine the 
strength of the structure.

Lap two steel plates, and pin them with a rivet or bolt. If you pull hard 
enough, the plates will want to twist. You can prevent twisting by butting 
the two main plates, and joining them with lapped splice plates.

Bolted joints have four possible failure modes. We can calculate the 
allowable load of the joint for each failure mode; the lowest value is the 
limiting case, and determines the strength of the joint.

Shear Failure The bolt shears off, preserving the integrity of the plates; this is the least expensive type of failure because 
bolts are cheaper and easier to replace than plates.

Bearing Failure The bolt crushes the plate where it bears against the plate.

Gross Tensile Failure The plate tears across its gross cross-sectional area (thickness times overall width), away from the 
bolt holes.

Net Tensile Failure The plate tears across its net cross-sectional area (thickness times actual material width) along a line 
of bolt holes.

Shear Failure

Imagine if we glue two plates together, so that they overlap with an 
area Aoverlap. Pull on the plates with a tensile load PS, and the shear stress

in the glue is τ=
PS

Aoverlap

. If we know the allowable shear strength of 

the glue, τall, we can calculate the tensile load that can be applied to the 
joint as PS=Aoverlap τ all . Now replace the glue with a bolt. The cross-
sectional area of the bolt, AB, carries the shear stress of the joint, so we 
can write PS=AB τall , where the cross-sectional area of the bolt
AB=

π
4

d 2
 and d is the bolt diameter. The bolt has a much smaller 

cross-sectional area than the area of the glue, which is compensated by 
the bolt's much higher shear strength.

If more than one bolt must shear off before the joint fails, then the 
number of these bolts is N, and PS=AB τall N . (We're assuming all the 
bolts have the same diameter and strength.)

A bolt can carry the load through more than one shear plane. Define n 
as the number of shear planes, and PS=n AB τ all N .
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Appendix B3 lists 
allowable shear stresses
for three bolt materials 
and two loading cases: 
either with the threads 
of the bolt in the shear 
plane, or with the 
smooth shank of the 
bolt in the shear plane.

A bolt is stronger if the threads are excluded from the shear plane because the threads act as stress concentration sites.

Example #1 – Bolt shear failure

Two A-36 steel main plates (dark blue) are joined with two
splice plates (light blue) and eight 3/4 in. diameter A325 bolts.
The plates are 6 in. wide and 1.5 in. thick; the splice plates are
the same width, and 0.8 in. thick. Bolt threads are excluded
from the shear plane. Calculate the load that the joint can
support in order to resist shear failure. Report the result in kips.

Solution From Appendix B3, A325 bolts with threads excluded
from the shear plane have a shear strength of 30 ksi. The problem is symmetrical,
so either the four bolts in the left plate will fail in shear first, or the four bolts in the
right plate will fail first. Therefore, we can erase half of the diagram, and focus on
four bolts, and N = 4.

The load is carried by two shear planes per bolt, so n = 2.

P S=n AB τ all N=2 shear planes
bolt

⋅

π
4
(0.75in.)2

shear plane
⋅30

kips
in.2 ⋅4 bolts=106 kips

Bearing Failure

If one or more of the plates is crushed by the bolt, then the 
area that is crushed equals the bolt diameter, d, times the plate
thickness, t. Multiply this area by the bearing strength of the 
plate, and we have the allowable bearing load for a joint with 
one bolt: PP=d t σ P−all .

The allowable bearing load for a joint with multiple bolts is
PP=d t σ P−all N .

Thickness t depends on the configuration of the plates.

• Lapped plates: Pick the thinner of the two plates.

• Spliced plates: Pick the smaller of these two options: the thickness of the main plate, or the sum of the thicknesses 
of the splice plates.

The allowable bearing stress is listed in Appendix B4; it is 1.5 times the ultimate tensile strength of the plate material.

When you tear a piece of paper out of a 3-ring binder, the paper fails by bearing failure.
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Example #2 – Bearing failure

Calculate the load that the joint in Example #1 can support in order to resist bearing failure. Report the result in kips.

Solution From the Allowable Plate Stress table, A-36 steel plates have an allowable bearing strength of 87 ksi. The two 
splice plates have a combined thickness of 1.6 in., which is greater than the main plate thickness of 1.5 in. Using the 
smaller of the two numbers, t = 1.5 in.

P P=d t σP−all N=0.75in.
bolt

⋅1.5in.⋅87 kips

in.2 ⋅4 bolts=392 kips

Gross Tensile Failure

The gross cross-sectional area of the plate some distance away from the bolt holes is the width, b, times the thickness, t. 
Check the gross cross-sectional areas of both the main plate and the splice plates, and use the smaller of the two. Multiply 
this area by the gross tensile strength of the plate to find the allowable gross tensile load for the joint: PG=b t σG−allowable . 
The allowable gross tensile strength* is listed in Appendix B, Table B4.

Example #3 – Gross tensile failure

Calculate the load that the joint in Example #1 can support in order to resist gross tensile failure. Report the result in kips.

Solution From Appendix B4, A-36 steel plates have an allowable gross tensile strength of 21.6 ksi.

P G=bt σG−all=6.0 in.⋅1.5 in.⋅21.6 kips

in.2 =194 kips

In Example #1, the widths of the main plate and splice 
plates were the same. If they are different, then choose the 
smallest cross-sectional area bt. In this diagram, the cross-
sectional area of the main plate is 8 in.×1.5 in.=12 in.2  
while the total cross-sectional area of the splice plates is
6 in.×(2×0.8in.)=9.6in.2 , so the splice plates will fail 

first in gross tensile failure.

Net Tensile Failure

We calculate gross tensile failure by multiplying the gross cross-sectional area by the allowable stress:
PG=AGσG−all=bt σG−all . Net tensile failure is similar; it is the net cross-sectional area multiplied by the allowable stress:
P N=AN σ N−all . The trick is to calculate AN correctly.

* Allowable gross tensile strength is equal to 60% of the yield strength of the plate material.
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The net cross-sectional area of the plate 
at the bolt holes is the gross cross-
sectional area, AG, minus the cross-
sectional area of the holes, AH. Each 
hole has a cross-sectional area 
perpendicular to the direction of the load
equal to the hole diameter, dH, times the 
plate thickness, t: AH=d H t . 

As a rule of thumb for structural applications, use a hole diameter 1/8 inch or 3 mm larger than the nominal bolt diameter.

The plate will fail along the line of one set of holes. Defining the number of holes in the fracture plane as NF, the net cross-
sectional area is AN=AG−AH=bt−N F d H t . The allowable net tensile load is this area times the allowable net tensile 
strength: P N=(bt−N F dH t )σ N−all . The allowable net tensile strength, listed in Appendix B4, is half of the ultimate tensile
strength of the plate material.

Both joints have six bolts per symmetrical half, but the joint on the left has three holes in the fracture plane, while the joint 
on the right has two holes in the fracture plane.

Example #4 – Net tensile failure

Calculate the load that the joint in Example #1 can support in order to resist net tensile failure. Report the result in kips.

Solution From Appendix B4, A-36 steel plates have an allowable net tensile strength of 29 ksi. The hole diameter is 1/8 in.
larger than the nominal bolt diameter, so d H=3 /4in+1/8in.=7 /8 in.

P N=(bt−N F dH t )σ N−all=(6 in.⋅1.5 in.−2 holes
7/8in.⋅1.5in.

hole )29
kips

in.2 =185 kips

Joint Efciency

Punching holes in steel causes it to weaken, so a joint may be weaker than the base material. Analysis of the roof of the 
Hartford Civic Center, which collapsed in January 1978 under a load of heavy wet snow, showed that some joint plates 
consisted of 85% holes, 15% steel! This flaw was one of several design and construction errors that led to the roof collapse.

We can calculate the efficiency of the joint by dividing the minimum joint strength by the gross strength of the plate some 
distance away from the joint. The symbol for efficiency is η, the Greek letter eta.
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Chapter 5: Bolted and Welded Joints

Example #5 – Joint efciency

Calculate the efficiency of the joint in the previous Examples. Report the result in percent.

Solution The minimum joint strength is 106 kips (bolt shear failure). The gross tensile load of the plate is 194 kips. Joint 

efficiency is η joint=
106 kips
194 kips

=0.55=55 % .

η joint<100 %  indicates an overloaded joint will fail before the structure does. This is the better failure mode for 
repairability, because it is easier to replace a bolt than to replace an I-beam. η joint≪100 %  indicates a poorly designed 
joint, which could be improved with stronger bolts, more bolts, or a better hole pattern.

η joint>100 %  indicates an overdesigned joint – the structure will fail before the joint.

Solution Method for Bolted Joints

Use all of the previous steps. Solve for P based on bolt shear failure, bearing failure, gross tensile failure, and net tensile 
failure. The lowest value of P is the limiting case. Divide this result by PG to find the efficiency of the joint.

Example #6 – Bolted joint problem

Two A-36 steel plates are joined with two splice plates and 
twelve 25 mm diameter A325-X high strength bolts. The 
main plates are 150 mm wide and 10 mm thick; the splice 
plates are 125 mm wide and 7 mm thick. Calculate the load 
that the joint can support; report the result in kN. Calculate 
the joint efficiency; report the result in percent.

Solution Solve for P based on shear, bearing, gross tensile, 
and net tensile; the lowest value is the limiting case. Divide 
this result by PG to find the efficiency of the joint.

Shear The “X” in A325 -X means bolts with threads 
excluded from the shear plane. From the Bolt Shear Strength
table, these bolts have a shear strength of 207 MPa.

The problem is symmetrical, so we can erase half of the 
diagram, and N = 6. The load is carried by two shear planes 
per bolt, so n = 2.

P S=n AB τallowable N=2 shear planes
bolt

π
4
(25 mm)2

shear plane
207MPa ⋅6 bolts∣ 103 kN

MPa m2∣ m2

(103 mm)2
=1220 kN

Bearing From Appendix B4, the allowable bearing stress in the plates is 600 MPa. The two splice plates have a total 
thickness of 14 mm, which is thicker than the 10 mm thick main plate, therefore t = 10 mm.

P P=d t σP−allowable N= 25 mm
bolt

10 mm⋅600 MPa 6 bolts∣ 103 kN
MPa m2∣ m2

(103mm)2=900 kN
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Example #6, continued

Gross Tensile From Appendix B4, the allowable gross tensile stress is 150 MPa. The splice and main plates have different 
thicknesses and widths, so use the smallest gross cross-sectional area. The cross-sectional area of the main plate is
150 mm×10 mm=1500 mm2 , and the total cross-sectional area of the splice plates is 125 mm×14 mm=1750 mm2 , 

therefore solve PG for the main plate.

PG=bt σG−allowable=
150mm⋅10 mm⋅150 MPa∣ 103 kN

MPa m2∣ m2

(103 mm)2
=225kN

Net Tensile From Appendix B4, the allowable net tensile stress is 200 MPa. You could first calculate whether the smallest 
cross-sectional area is in the main plate or in the splice plates, or you can calculate PN both ways and pick the smaller 
value.

Splice plates:

P N=(b t−N F d H t )σN−allowable=(125 mm⋅14 mm−2holes
28 mm⋅14 mm

hole )200MPa ∣ 103kN
MPa m2 ∣ m2

(103 mm)2
=193kN

Main plate:

P N=(bt−N F d H t )σN−allowable=(150 mm⋅10 mm−2holes
28 mm⋅10 mm

hole )200MPa ∣ 103 kN
MPa m2∣ m2

(103 mm)2
=188kN

The lowest value is 188 kN, so the joint will fail first with the main plate fracturing across a line of bolt holes.

Joint Efciency Pmin=188kN  and PG−main plate=225kN . η joint=
188 kN
225 kN

=0.84=84%

Terms for Bolted Joints

PS Shear load n Number of shear planes

PP Bearing load N Number of bolts (all for a lap joint; half for a splice joint)

PG Gross tensile load NF Number of bolts in the fracture plane

PN Net tensile load AB Bolt cross-sectional area

τall. Allowable shear stress d Bolt diameter

σall. Allowable normal stress dH Hole diameter 

b Plate width t Total plate thickness that is failing
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Welded Lap Joints

Bolted and riveted joints contain holes which may act as stress 
concentration sites. If joined plates have to be watertight, such as the 
plates in a tank or a ship, then welding is a better choice. Welding is a
good choice for parts that will not be disassembled in the future. If 
you have ever soldered copper pipes or copper wire, you have melted 
the solder but not the pipes or wire. In welding, the weld metal and 
the base metal melt together. In electric arc welding, an electric arc is 
struck between an electrode and the base metal. The arc melts the 
metals, and the electrode is gradually consumed. This chapter focuses 
on continuous electric-arc fillet welds in lapped steel joints.

In cross-section, a fillet weld looks roughly like a right triangle. The 
size l of a fillet weld is the length of a leg of the triangle. Overloaded 
fillet welds fail by shearing along the throat h.

Using trigonometry, h≈l sin 45° . The weld supports shear load PS over area h×L , where L is the total length of the weld.
The allowable shear strength of the weld metal is τallowable=0.3σUTS , where σUTS  is the ultimate tensile strength* of the 
weld metal (not the plate metal). Combining these equations, the load that the welded joint can support is
P weld=τ allowable×area=0.3σUTS l sin 45° L=0.212⋅l⋅L⋅σUTS

Weld strength is proportional to weld size, weld length, and the strength of the electrode. Mild steel electrodes are classified
by their strength when welded, as Exx where xx is the ultimate tensile strength of the weld in ksi. For example, an E60 
electrode has an ultimate tensile strength of 60 ksi, while an E70 electrode has a tensile strength of 70 ksi. Appendix B5 
shows unit strengths for common weld sizes, using E60 and E70 electrodes. The values come from P weld=0.212⋅l⋅L⋅σUTS . 
Use Appendix B, Table 5, for common weld and plate sizes; use the equation for a different electrode such as E90, or for a 
nonstandard plate size. Use Appendix B, Table 6, to select a weld size. AISC recommends these weld sizes based on the 
thickness of the thinner of the two plates.

The strengths in the table are given as load per unit length; multiply this value by the total length of the weld to find the 
shear load capacity of the welded joint. For example, a 6 in. long, 7/16 in. weld, using an E60 electrode, has a unit strength 

of f weld=5.57 kips/in.  The weld can support a load of P weld=L f weld=
6 in. 5.57 kips

in.
=33.4kips .

Weld strength is not the only consideration when you design a welded joint. AISC recommends the following practices:

End Return The end of a fillet weld creates a stress concentration. Run the weld around the end of the top plate to minimize 
this effect. The length of the end return should be at least twice the nominal weld size:, a 3/8 in. weld should wrap around 
the end at least 0.75 in. End returns are included in the total weld length, L.

Lap Based on Thickness Two plates in a lap joint should lap at least five times the thickness of the thinner plate, and no less
than 1 inch. For example, a 3/8 in. thick plate welded to a 1/2 in. thick plate should lap at least 3/8 in.×5=1.875 in. ; an 1/8
in. plate welded to a 1/4 in. plate should lap at least 1 in. because 1/8 in.×5=0.625 in. , which is less than an inch.

Lap Based on Width This rule applies to welds that are parallel to the loading direction. Two plates in a lap joint should lap 
at least the width b of the narrower plate, unless the weld wraps fully around the end of the plate (i.e., the end returns meet 
at the centerline). For example, a 3/8 in. thick, 6 in. wide plate welded along its sides to a 1/2 in. thick, 8 in. wide plate 
should lap at least 6 in.

Weld Size The leg of a fillet weld can be made as large as the thickness of the top plate, or smaller; AISC recommends 
ranges of size according to Appendix B6. If the top plate is less than 1/4 in. thick, then the leg can be as large as the 
thickness; for thicker plates, the leg should be no larger than 1/16 in. less than the plate thickness.

* See Chapter 2 for more information on ultimate tensile strength.
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Joint Efciency

The efficiency of a welded joint is the joint load divided by the gross tensile load in the plate with the smaller cross-section.

Example #7 – Weld joint with E70 electrode

Two 3/8 in. thick, 6 in. wide plates made of A36 steel are welded 
as shown. Select the maximum size weld, and using an E70 
electrode, determine the joint strength, reporting the result in kips. 
Also, calculate the efficiency of the joint.

Solution From Appendix B6, the maximum weld size is 5/16 in. 
From Appendix B5, a 5/16 in. weld made with an E70 electrode 
has a unit strength of f weld=4.63 kips/in.  The total weld length is 
12 in., so the welded joint can support a load of

P weld=L f weld=
12 in. 4.63kips

in.
=55.6 kips

From Appendix B4, A36 steel has an allowable gross tensile strength of 21.6 ksi. The gross plate strength is

PG=bt σG−allowable=6in.⋅3/8in.⋅21.6 ksi=48.6 kips . η joint=
55.56 kips
48.60 kips

=1.14=114% , which means that the joint is 

stronger than the base metal. If the structure fails, the plate will crack while the joint remains intact.

Example #8 – Weld joint with E80 electrode

A 1/2 in. thick, 6 in. wide plate made of A36 steel is welded to a 
5/8 in. thick, 8 in. wide plate using a 3/16 in. weld with an E80 
electrode. Determine the joint strength, reporting the result in kips.
Also, calculate the efficiency of the joint.

Solution Appendix B5 does not include data for the E80 electrode; 
instead, use the weld strength equation. The length of each weld is 
7 in. plus the 1 in. end return, or 8 in. The total weld length
L=2(8in.)=16 in.  The tensile strength of an E80 weld is 80 ksi. 

The joint can support a load of

P weld=0.212⋅l⋅L⋅σUTS=0.212⋅ 3
16

in.⋅16 in.⋅80 kips

in.2
=50.9 kips .

From Appendix B4, A36 steel has an allowable gross tensile 
strength of 21.6 ksi. Use the smaller plate cross-sectional area (the 
top plate). The gross plate strength is

P G=bt σG−allowable=6 in.⋅1
2

in.⋅21.6 kips

in.2 =64.8 kips .

η joint=
50.9 kips
64.8 kips

=0.79=79% , which means that the joint is 21% 

weaker than the 6 in. plate. The joint could be strengthened with a 
larger weld bead, a stronger weld electrode, a continuous bead 
around the end of the top plate, or a weld bead underneath.
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Chapter 5: Bolted and Welded Joints

Key Equations

Check bolted joints for shear, bearing, gross tensile, and net tensile failure; the lowest result is the limiting case. With a 
symmetrical spliced joint, erase half of the joint and solve.

The allowable shear load for a bolted joint is PS=n AB τ allowable N  where n is the number of shear planes per bolt, AB is the 
cross-sectional area of the bolt (calculated from its nominal diameter), τallowable is the allowable shear stress of the bolt (see 
Appendix B3), and N is the number of bolts being considered.

The allowable bearing load for a bolted joint is PP=d t σ P−allowable N  where d is the nominal bolt diameter, t is the plate 
thickness (either the thickness of the main plate, or the combined thicknesses of the splice plates, whichever is smaller), and 
σP-allowable is the allowable bearing stress in the plate (see Appendix B4).

The allowable gross tensile load for a bolted joint is PG=bt σG−allowable  where b is the plate width and σG-allowable is the 
allowable gross tensile stress in the plate.

The allowable net tensile load for a bolted joint is PN=(bt−N F d H t )σN−allowable  where NF is the number of holes in the 
fracture plane, dH is the nominal hole diameter (1/8 inch or 3 mm larger than d), and σN-allowable is the allowable net tensile 
stress in the plate.

Joint efficiency of a bolted joint is η joint=
Pmin

P G

, where Pmin is the smallest of PS, PP, PG, and PN.

The allowable tensile load of a fillet-welded joint is P weld=0.212⋅l⋅L⋅σUTS  where L is the total length of the weld. If 
standard plates and weld sizes are used with E60 or E70 electrodes, then use Appendix B (Table B5) and P weld=L f weld  to 
find the allowable tensile load.

Joint efficiency of a welded joint is η joint=
Pweld

P G

.
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Chapter 6: Properties of Areas
Cross-sectional areas of beams, shafts, and columns have seven properties that we need in order to calculate stresses, 
deflections, angles of twist, and buckling resistance in these structures. These properties are dimensions, area, centroid, 
centroidal x-x and y-y axes, moment of inertia, radius of gyration, and polar moment of inertia.

Dimensions and Area

The depth of a beam is the 
distance from the top to the 
bottom (the height of the beam). 
The width is the distance from the
front to the back, as you face the 
long length of the beam (the 
thickness of the beam).

The area is the cross-sectional area. For a rectangular beam, the area is the width times the depth.

Centroid and Centroidal Axes

Carefully balance a cardboard rectangle on a sharp 
point. The location of the point on the rectangle is 
called the centroid of the rectangle. The centroid of a 
two-dimensional shape is analogous to the center of 
gravity of a three-dimensional object.

Carefully balance the rectangle on a straightedge so 
that two ends of the rectangle are parallel to the 
straightedge. The location of the balance line is a
centroidal axis of the rectangle.

Every shape has a centroid and centroidal axes. We will use these properties in beam problems. Set a beam on edge, define 
the x and y axes as horizontal and vertical, and we have x-x and y-y centroidal axes of the beam cross-sectional area.

Moment of Inertia of a Rectangle

In everyday speech, the word “moment” means a short amount of time. In engineering 
mechanics, moment is the product of a quantity and the distance from that quantity to a 
given point or axis. For example, in Statics, a force acting on a wrench handle produces a 
torque, or moment, about the axis of a bolt: M=P×L . This is the moment of a force.

We can also describe moments of areas. Consider a beam with a rectangular cross-section. 
The horizontal centroidal axis of this beam is the x-x axis in the drawing.

Take a small area a within the cross-section at a distance y from the x-x 
centroidal axis of the beam. The first moment of this area is a×y . The 
second moment of this area is I x=(a×y)× y=ay 2 . In Strength of 
Materials, “second moment of area” is usually abbreviated “moment of 
inertia”.* If we divide the total area into many little areas, then the moment
of inertia of the entire cross-section is the sum of the moments of inertia of
all of the little areas. We can also calculate the moment of inertia about the
vertical y-y centroidal axis: I y=(a×x)×x=ax2 . The x and y in Ix and Iy 
refer to the centroidal axis.

* Engineers use the term “moment of inertia” out of habit. As A.P. Poorman states in Applied Mechanics in 1940, “the term moment of 
inertia has been in use too long to be changed,” as it was first used in this sense by Swiss mathematician Leonhard Euler in the 18 th 
century.
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This rectangular beam cross-section has a depth of 16 cm and a width of 5 cm. We can 
divide the beam into 8 equal segments 2 cm deep, 5 cm wide, so that each segment has an 
area a=2cm×5cm=10 cm 2 . The centroidal axis of segment #1 is 7 cm from the x-x axis
(y1=7cm) ; the centroidal axis of segment #2 is 5 cm from the x-x axis (y 2=5cm) ; and 

so on. We can estimate the moment of inertia for the entire area as the sum of the moments

of inertia of the segments, written as I x=∑
1

n

ai yi
2  where n = the total number of 

segments, and i = the number of each segment (from 1 to n), or:
I x=a1 y1

2+a2 y2
2+a3 y 3

2+a 4 y4
2+a5 y5

2+a6 y6
2+a7 y7

2+a8 y8
2

With numbers and units, we have:

I x=10 cm2(7cm)2+10 cm2(5cm)2+10 cm2(3cm)2+10 cm2(1cm)2

+10 cm2(1cm)2+10 cm2(3cm)2+10 cm2(5cm)2+10 cm2(7cm)=1,680cm4

We can take the same beam and split it into 16 segments 1 cm deep.

I x=a1 y 1
2+a 2 y2

2+a3 y3
2+a4 y 4

2+a5 y 5
2+a6 y 6

2+a7 y7
2+a8 y8

2

+a 9 y9
2+a10 y10

2 +a11 y11
2 +a12 y 12

2 +a13 y13
2 +a 14 y 14

2 +a15 y 15
2 +a16 y16

2

We can estimate the moment of inertia as:

I x=5cm2(7.5 cm)2+5cm2(6.5cm)2+5cm2(5.5 cm)2+5cm2(4.5cm)2

+5cm 2(3.5cm)2+5cm 2(2.5 cm)2+5cm2(1.5 cm)2+5cm2(0.5cm)
+5cm 2(0.5cm)2+5cm 2(1.5cm)2+5cm2(2.5 cm)2+5cm2(3.5cm)2

+5cm 2(4.5 cm)2+5cm2(5.5 cm)2+5cm2(6.5 cm)2+5cm2(7.5cm)=1,704.5 cm4

As the segment size drops, the estimates converge on a solution. Split the beam into an infinite 

number of infinitely-small segments to get the actual solution, derived from calculus: I x=
bh3

12
, 

where b is the width and h is the depth. See Appendix C for moments of inertia of other simple 
shapes.

Example #1 – Moment of inertia of a rectangle

A rectangular beam has a depth of 16 cm and a width of 5 cm. What is the moment of inertia about the x-x centroidal axis?
Report the answer in cm4.

Solution I x=
bh3

12
=5cm(16 cm)3

12
=1,706.7cm4     The estimated Ix based on 8 segments was within 2% of the exact 

answer; the estimated Ix based on 16 segments is within 0.1%. Estimates can get us close to the exact solution, but in this 
case, the math for the exact solution is less time-consuming (one equation instead of 16).

Compound Beams Sharing a Centroidal Axis

Laminated structural wood beams are manufactured by glueing planks together. If we stand the planks vertically and glue 
them along their facing surfaces, we can increase the moment of inertia. Since bending strength is directly proportional to I, 
if you double the moment of inertia you double the strength of the beam.

50

x x

1

5 cm

16
cm

2

3

4

5

6

7

8

y
1

x x

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

5 cm

16
cm

x x
h

b



Chapter 6: Properties of Areas

Example #2 – Moment of inertia of 2 rectangles

Two 5cm×16 cm rectangular planks are glued together as 
shown. What is the moment of inertia about the x-x centroidal 
axis? Report the answer in cm4.

Solution The moment of inertia is

I x=
bh3

12
=

10 cm(16cm)3

12
=3,413.3cm4 , which is twice the 

moment of inertia of a single beam. Therefore, we can add the 

moments of inertia of two cross-sections as long as  they share the same centroidal axis: I xtotal= I x1+ I x2 . A laminated 

beam made of n parallel planks would have a moment of inertia of I xtotal=∑
1

n

I x n .

You can use this method even if the planks are not the same size, as long as they share the same centroidal axis.

Example #3 – Moment of inertia of 2 rectangles of diferent sizes

A 5cm×16 cm rectangular plank is glued to an 8cm×3cm  as shown, so they share 
the same neutral x-x axis. What is the moment of inertia about the centroidal axis? 
Report the answer in cm4.

Solution Add the moments of inertia of the individual planks:

I x=
b1h1

3

12
+

b2h 2
3

12
=

b1 h1
3+b2h 2

3

12
=5cm(16 cm)3+3cm(8cm)3

12
=1,834.7 cm4

A compound beam shape may be made by welding or glueing 
two beams together, or it may be made by extruding or rolling. 
Aluminum extrusions are widely used in architecture, machine 
parts, furniture, automotive components, and other consumer 
goods. Steel is hot-rolled into railroad rails and wide-flange 
structural steel beams, channels, and angles. Draw construction 
lines on a cross-section and analyze it as if it were glued together
with rectangles sharing a common centroidal axis.

The moment of inertia for the entire shape is I xtotal= I x1+ I x2+I x3=
b1h1

3+b2 h2
3+b3 h3

3

12
.

Hollow Beams Sharing a Centroidal Axis

If a beam is hollow and the hollow space 
shares the same centroidal axis as the beam, 
then we can subtract the moment of inertia of 
the hollow area from the moment of inertia of
an equivalent solid beam. For a rectangular 
beam with a rectangular hollow section,

I xtotal= I x1− I x2=
b1h1

3

12
−

b2h 2
3

12
=

b1 h1
3−b2h 2

3

12
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Example #4 – Moment of inertia of a hollow rectangle

A hollow rectangular beam has 1 cm thick walls, as shown. What is the moment of 
inertia about the x-x centroidal axis? Report the answer in cm4.

Solution Subtract the moment of inertia of the hollow space from the moment of inertia 
of the outside dimensions.

I x=
bo ho

3

12
−

bi hi
3

12
=9 cm(16cm)3−7cm(14 cm)3

12
=1,471cm4

We can use the same technique for finding the moment of inertia of a hollow 

tube. From calculus, the moment of inertia of a circle is I x=
πd 4

64
, therefore the 

moment of inertia of a hollow circle is I x=
πd o

4

64
−
πd i

4

64
=
π(d o

4−di
4)

64
.

Example #5 – Moment of inertia of a hollow circle

A standard 2" steel pipe has an outside diameter d o=2.375 in.  and an inside diameter d i=2.067 in.  What is the moment 
of inertia about the x-x centroidal axis? Report the answer in in.4.

Solution Subtract the moment of inertia of the hollow space from the moment of inertia of the outside dimensions.

I x=
π[(2.375 in.)4−(2.067 in.)4]

64
=0.6657 in.4

The Transfer Formula

The moments of inertia calculated in the previous examples were evaluated about the 
centroidal axis of each shape. Sometimes we need to calculate the moment of inertia of a 
beam about a different, noncentroidal axis. The Transfer Formula* is I= I o+ad2 , where 
Io = moment of inertia about the x-x centroidal axis, I = moment of inertia about a parallel 
x'-x' axis, a = the area of the shape, and d = the distance between the x-x centroidal axis and
the parallel x'-x' axis (the transfer distance). Note: the symbol d is also used for the 
diameter of a circle; these quantities are different, even though they share the same symbol.

Example #6 – Moment of inertia about a diferent axis

A beam has a width of 5 inches and a depth of 6 inches. What is the moment of inertia
about the base of the beam, marked as the x'-x' axis? Report the answer in in.4.

Solution The moment of inertia about the centroidal axis is

I o=
bh3

12
=

5in.(6in.)3

12
=90 in.4  and the cross-sectional area is a=5in.×6 in.=30 in.2 .

The distance from the x-x centroidal axis to the x'-x' axis d=3 in.  Using the Transfer Formula,
I x '= I o+ad 2=90in.4+(30in.2)(3in.)2=360 in.4

* Also known as the Parallel Axis Theorem.
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Compound Beams With Diferent Neutral Axes

Some compound cross-sections are made of segments
which do not share the same centroidal axis. As long as the
neutral axes are parallel, we can use the Transfer Formula
to find the moment of inertia of the compound beam. For
example, this beam cross-section consists of two
rectangular segments, and the x-x centroidal axis of the
beam is different from the x1-x1 and x2-x2 neutral axes of
segments #1 and #2. Using the Transfer Formula, we can
calculate the moment of inertia of each segment about the 
x-x centroidal axis of the compound shape, then add the
results to obtain the total moment of inertia.

Using a 10-step process, we can calculate the moment of
inertia of the compound beam. This approach is sometimes
called a tabular method because you enter all of the
required numbers in a table as you solve the problem.

Step 1 Divide the compound beam into simple shapes, and 
label the segments. This compound beam can be divided into 
two segments; the method also works for complex shapes 
made up of many simple shapes.

Step 2 Calculate the area a of each segment. Enter the areas 
and their sum into a table. Be sure to list the units, because in 
some problems, you may need to include a conversion factor 
in the calculation.

a1=8in.×3in.=24 in.2

a2=4in.×12 in.=48in.2

Seg- a

ment (in.2)

#1 24

#2 48

Sum 72

Step 3 Pick a Reference Axis, and label it on the diagram. In 
theory, you can select any axis, but in practice, the math is 
usually easier if you pick an axis along the top or bottom of 
the complex shape, or along the centroidal axis of one of the 
segments.
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Chapter 6: Properties of Areas

Step 4 Draw the distance from the Reference Axis to the 
centroidal axes of the segments, x1-x1  and x2-x2. Label these 
distances y1, y2, etc. Enter these values into the table.

Seg- a y

ment (in.2) (in.)

#1 24 13.5

#2 48 6

Sum 72

Step 5 Calculate the product a×y  for each segment, and 
enter these values and their sum in the table.

Seg- a y ay

ment (in.2) (in.) (in.3)

#1 24 13.5 324

#2 48 6 288

Sum 72 612

Step 6 Draw the distance from the Reference Axis to the x-x 
centroidal axis of the complex shape. Calculate this distance 
as

y=
∑ ay

∑ a
=

612in.3

72 in.2
=8.5in.
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Chapter 6: Properties of Areas

Step 7 Draw the Transfer Distance d for each segment. This is
the distance from the centroidal axis of the segment to the 
centroidal axis of the complex shape. Given the way this 
beam is drawn, d 1= y1− y  and d 2=y−y2 . For other 
compound beams, you will have to figure out the formulas for
d1, d2, d3, etc. based on the drawing. Enter the results into the 
table.

Seg- a y ay d

ment (in.2) (in.) (in.3) (in.)

#1 24 13.5 324 5

#2 48 6 288 2.5

Sum 72 612

Step 8 Calculate the product a×d 2  for each segment, and 
enter the results and their sum in the table. Be sure to 
calculate a×d 2 , not a×d ...it’s an easy error to make. 

Segment 1: a×d 2=24 in.2(5in.)2=600 in.4

Segment 2: a×d 2=48 in.2(2.5in.)2=300in.4

Enter these values and their sum into the table. 

Seg- a y ay d ad2

ment (in.2) (in.) (in.3) (in.) (in.4)

#1 24 13.5 324 5 600

#2 48 6 288 2.5 300

Sum 72 612 900

Step 9 Calculate I for each segment about its centroidal axis: 

I o1=
bh3

12
=

8in. (3 in.)3

12
=18in.4

I o2=
bh3

12
=

4 in.(12 in.)3

12
=576in.4

Enter these values and their sum into the table. 

Seg- a y ay d ad2 Io

ment (in.2) (in.) (in.3) (in.) (in.4) (in.4)

#1 24 13.5 324 5 600 18

#2 48 6 288 2.5 300 576

Sum 72 612 900 594

Step 10 Use the Transfer Formula to calculate I for the 
compound shape.

I=∑ I o+∑ ad 2=594 in.4+900in.4=1494 in.4
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Hollow Beams With Diferent Neutral Axes

If the beam is hollow and the cavity does not share the same 
neutral axis as the outline of the solid shape, then we need the
Transfer Formula. This example is a 6 cm × 8 cm rectangle 
with a hole in the shape of a 5 cm diameter half circle.

Let Segment #1 be the solid shape (with no hole), and 
Segment #2 be the hole. In all calculations, the area of the 
hole and the moment of inertia of the hole are negative 
numbers. Thus a1, a1y1, a1d1

2, and I1 are positive numbers; a2, 
a2y2, a2d1

2, and I2 are negative numbers.

Note: the symbol d is used for the diameter of the half circle 
and for the distances between the neutral axis of the 
compound shape and the neutral axes of the component parts.

Step 1 Divide the compound beam into simple shapes, and 
label the segments.

Step 2 Calculate the area a of each segment.

a1=8cm×6cm=48 cm2

a2=−
π
8

d 2=−π
8
(5 cm)2=−9.82cm2

Seg- a

ment (cm2)

#1 48.0

#2 -9.82

Sum 38.2

Step 3 Pick a Reference Axis, and label it on the diagram.
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Chapter 6: Properties of Areas

Step 4 Draw the distance from the Reference Axis to the 
centroidal axes of the segments, x1-x1  and x2-x2. Label these 
distances y1, y2, etc. Enter these values into the table.

From Appendix C, the x-x neutral axis is 
2 d
3π

 above the base

of the half circle. 

2 d
3 π
= 2(5cm )

3π
=1.06cm

Add the distance from the reference axis to the base of the 
half circle to get y2=3cm+1.06cm=4.06cm

Seg- a y

ment (cm2) (cm)

#1 48.0 3

#2 -9.82 4.06

Sum 38.2

Step 5 Calculate the product a×y  for each segment, and 
enter these values and their sum in the table.

Seg- a y ay

ment (cm2) (cm) (cm3)

#1 48.0 3 144

#2 -9.82 4.06 -39.9

Sum 38.2 104

Step 6 Draw the distance from the Reference Axis to the x-x 
centroidal axis of the complex shape. Calculate this distance 
as

y=∑ ay

∑ a
= 104 cm3

38.2cm 2=2.72cm

Step 7 Draw the Transfer Distance d for each segment. This is
the distance from the centroidal axis of the segment to the 
centroidal axis of the complex shape. Enter the results into the
table.

Placing a hole in the upper part of this beam shifts the 
centroidal axis downward, to where more of the material lies. 
Since d 1=0.27cm , the centroidal axis of this hollow beam is
0.27 cm below the centroidal axis of a solid 6 cm × 8 cm solid
beam. 

Seg- a y ay d

ment (cm2) (cm) (cm3) (cm)

#1 48.0 3 144 0.27

#2 -9.82 4.06 -39.9 1.33

Sum 38.2 104
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Chapter 6: Properties of Areas

Step 8 Calculate the product a×d 2  for each segment, and 
enter the results and their sum in the table. Be sure to 
calculate a×d 2 , not a×d ...it’s an easy error to make. 

Segment 1: a1×d 1
2=48cm 2(0.27cm )2=3.57cm4

Segment 2: a2×d2
2=−9.82 cm2(1.33 cm)2=−17.5cm4

Seg- a y ay d ad2

ment (cm2) (cm) (cm3) (cm) (cm4)

#1 48.0 3 144 0.27 3.57

#2 -9.82 4.06 -39.9 1.33 -17.5

Sum 38.2 104 -13.9

Step 9 Calculate I for each segment about its centroidal axis. 
Note that I is negative for the hole. 

I o1=
bh3

12
=

8cm (6cm)3

12
=144cm4

I o2=−
d 4

145.78
=−(5cm )4

145.78
=−4.29cm 4

Enter these values and their sum into the table. 

Seg- a y ay d ad2 Io

ment (cm2) (cm) (cm3) (cm) (cm4) (cm4)

#1 48.0 3 144 0.27 3.57 144

#2 -9.82 4.06 -39.9 1.33 -17.5 -4.29

Sum 38.2 104 -13.9 139.7

Step 10 Use the Transfer Formula to calculate I for the 
compound shape.

I=∑ I o+∑ ad 2=139.7cm 4−13.9cm 4=125.8 cm 4

Some compound beams have more than two segments; the 10-step procedure is the same, with more rows in the table.

Moment of Inertia about the y-y Neutral Axis

The solution method for Iy is the same as for Ix, turned 90°. 
Instead of y terms in the table, we have x terms.

Step 1 Divide the compound beam into three rectangles.
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Chapter 6: Properties of Areas

Step 2 Calculate the area a of each segment. 

a1=4in.×1 in.=4 in.2

a2=6in.×1 in.=6 in.2

a3=4in.×2in.=8in.2

Seg- a

ment (in.2)

#1 4

#2 6

#3 8

Sum 18

Step 3 Pick a Reference Axis (easiest along the left edge or 
along the right edge).

Step 4 Draw the distance from the Reference Axis to the 
centroidal axes of the segments, y1-y1, y2-y2., and y3-y3. Label 
these distances x1, x2, etc. In this problem, the y1-y1 and y3-y3 
centroidal axes are the same.

Seg- a x

ment (in.2) (in.)

#1 4 2

#2 6 4.5

#3 8 2

Sum 18

Step 5 Calculate the product a×x  for each segment, and 
enter these values and their sum in the table.

Seg- a x ax

ment (in.2) (in.) (in.3)

#1 4 2 8

#2 6 4.5 27

#3 8 2 16

Sum 18 51
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Chapter 6: Properties of Areas

Step 6 Draw the distance from the Reference Axis to the y-y 
centroidal axis of the complex shape. Calculate this distance 
as

x=∑ ax

∑ a
= 51in.3

18 in.2=2.833 in.

Step 7 Draw the Transfer Distance d for each segment. This is
the distance from the centroidal axis of the segment to the 
centroidal axis of the complex shape. For this drawing,
d1=x− x1=d3  and d2=x2− x .

Seg- a x ax d

ment (in.2) (in.) (in.3) (in.)

#1 4 2 8 0.83

#2 6 4.5 27 1.67

#3 8 2 16 0.83

Sum 18 51

Step 8 Calculate the product a×d 2  for each segment. Seg- a x ax d ad2

ment (in.2) (in.) (in.3) (in.) (in.4)

#1 4 2 8 0.83 2.78

#2 6 4.5 27 1.67 16.67

#3 8 2 16 0.83 5.56

Sum 18 51 25.00

Step 9 Calculate I for each segment about its centroidal axis: Seg- a x ax d ad2 Io

ment (in.2) (in.) (in.3) (in.) (in.4) (in.4)

I o1=
hb3

12
=1in.(4 in.)3

12
=5.333 in.4

I o2=
hb3

12
=6 in.(1in.)3

12
=0.5 in.4

I o3=
hb3

12
=2in.(4in.)3

12
=10.667 in.4

#1 4 2 8 0.83 2.78 5.33

#2 6 4.5 27 1.67 16.67 0.5

#3 8 2 16 0.83 5.56 10.67

Sum 18 51 25.00 16.50
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Chapter 6: Properties of Areas

Step 10 Use the Transfer Formula to calculate Iy for the 
compound shape.

I y=∑ I o+∑ ad 2=25.0 in.4+16.5in.4=41.5in.4

Picking Sensible Shapes

Dividing up an area into sensible shapes 
requires some thought. For example, a 
regular heptagon has 7 sides of equal length 
and equal angles. This shape can be divided 
into seven triangles, where angle γ is 1/7 of 
360° = 51.4°. Unfortunately, only one 
triangle has an edge parallel to the 
horizontal axis. It makes more sense to 
divide the heptagon into one triangle and 
two trapezoids.

The next step is to find the angles and edge lengths of the three 
shapes. Each internal angle is α, and each edge length is g.

From geometry, the internal angle for an n-sided regular shape is

α = n−2
n
×180° = 7−2

7
×180 ° = 128.6°

Area #1 is a triangle, so the sum of its internal angles is 180°. Solve
α+2β=180°  for the unknown angles:

β=180°−α
2

=180°−128.6 °
2

=25.7°

Use the Law of Sines to find dimension f, the base of the triangle.
f

sinα
= g

sinβ
 so f =g

sinα
sinβ

=g
sin 128.6°
sin 25.7°

=1.80 g

Use the Pythagorean Theorem to find the height of the triangle. 

height=√g 2−( f
2 )

2

=√g 2−(1.80 g
2 )

2

=0.434 g
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Area #2 is a trapezoid. We need angle φ in order to calculate the base
of the trapezoid, but it takes a few steps.

From the diagram, angle ϕ=α−β=128.6 °−25.7°=102.9°

Next, drop a couple of vertical lines from each vertex of the top edge
of the trapezoid, creating two internal triangles and an internal 
rectangle.

Angle λ=ϕ−90 °=102.9 °−90 °=12.9 °

Length m=g sin λ=g sin 12.9 °=0.223 g

The base of the trapezoid is equal to the base of the internal rectangle
plus the bases of the two internal triangles:
k= f +2m=1.80 g+2(0.223 g)=2.25 g

Use trigonometry to find the height of the trapezoid:

height=g cosλ=g cos 12.9 °=0.975 g

Area #3 is a trapezoid. Draw a vertical line from a vertex along the 
bottom edge.

Angle ψ=α−90 °=128.6 °−90 °=38.6°

Use trigonometry to find the height of the trapezoid:

height=g cos ψ=g cos 38.6°=0.782 g

Now let's mark the various dimensions on the original diagram.

Use the dimensions to find y values. Shape #1 is a triangle; its neutral
axis is one third of its height. Add that value to the heights of shapes 

#2 and #3: y1=
0.434 g

3
+0.975 g+0.782 g=1.90 g

Shapes #2 and #3 are isosceles trapezoids whose neutral axes are 
functions of their base dimensions and heights. See Appendix C for 
details.

Solving for Ix requires a table; solving for Iy does not because the 
three shapes share the same y-y neutral axis.
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Chapter 6: Properties of Areas

Shortcuts

Some shapes look like they require the Transfer Formula, 
but creative segment choices make the problem easy. 
Consider a beam with two hollow sections. The moment 
of inertia could be calculated using the 10-step Transfer 
Formula method with segments #1 (large rectangle), #2 
(upper cavity), and #3 (lower cavity), but it is easier to 
break it into rectangles sharing the same centroidal axis.

Calculate Ix of segment A (large rectangle), subtract Ix of 
segment B (two cavities joined together) and add Ix of 
segment C (material between the two cavities).

The moment of inertia of a wide-flange beam made of 
welded rectangular plates is easy to solve: subtract the 
moments of inertia of the spaces to the left and right of 
the web from the moment of inertia of a large rectangle.

Hot-rolled steel wide-flange beams, channels, and angles 
have rounded internal and external corners, which makes 
hand calculation of Ix and Iy difficult. Instead of 
calculating these values, you can look them up in tables 
(see Appendix D).

Radius of Gyration

The Transfer Formula lets us calculate the moment of inertia of a shape about 
any axis other than the neutral axis of that shape. Consider two rectangles 
which have the same area and the same moment of inertia about the neutral 
axis of rectangle #1. The moment of inertia of rectangle #2 about the x1-x1 

neutral axis is I x1= I x2+ad 2 , so 
b1 h1

3

12
=

b2 h2
3

12
+a2 d 2 . Since a1=a2 , we can 

write b1h1=b2 h2 , therefore 
a h1

2

12
=

a h2
2

12
+a d 2 . We can cancel the areas, 

leaving 
h1

2

12
=

h2
2

12
+d 2 .

Solving this equation for the height of rectangle #2 gives us h2=√h1
2−12d 2 . 

Plotting h2 as a function of transfer distance d shows that there is some 
maximum value of d where the height of rectangle #2 approaches zero (and its 
base grows very large).

Another way to rewrite the equation is d=√ h1
2−h2

2

12
. Now we can see that as h2

approaches zero, d approaches √ h1
2

12
=

h1

√12
. This special value of d is called

the radius of gyration, and is easily calculated for any shape as rG=√ I /A . The radius of gyration is used for analyzing 
columns, which are tall, thin structures loaded in compression. Columns fail by buckling at stresses below the expected 
yield strength of the material (see Chapter 14). The greater the radius of gyration, the more resistant a column is to buckling 
failure.
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Polar Moment of Inertia

The moment of inertia of a cross-sectional area is I x=∑
1

n

ai yi
2  relative to the x-x centroidal axis and I y=∑

1

n

ai xi
2  relative 

to the y-y centroidal axis. In torsion problems, we need a moment of inertia relative to the centroid of the shape, so we use 

the radius of each elemental area from the center of gravity, r, to define the polar moment of inertia J=∑
1

n

air i
2 . The units 

are the same as for moment of inertia: in.4 or mm4. From calculus, the exact equation for a circle is J= π
32

d4
; for a hollow 

circle, J= π
32
(d o

4−d i
4) .

Using the Pythagorean Theorem, we know that r2=x2+y2 , so J=I x+I y  for any shape. As a result, for simple shapes 
that have the same dimensions in the x and y directions (squares and circles, either hollow or solid), J=2 I x=2 I y .

Key Equations

Moments of inertia of simple shapes about the x-x centroidal axis are in Appendix C.

Use the Transfer Formula to find the moment of inertia about a noncentroidal axis, or for calculating the moment of inertia 
of a compound shape: I=I o+ad 2 .

The polar moment of inertia for a solid circle is J= π
32

d4
, and for a hollow circle is J= π

32
(d o

4−d i
4) .
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Chapter 7: Torsion in Round Shafts
Shear Stress in a Round Shaft

Many machine parts are loaded in torsion, either to transmit
power (like a driveshaft or an axle shaft in a vehicle) or to
support a dynamic load (like a coil spring or a torsion bar).
Power transmission parts are typically circular solid shafts or
circular hollow shafts because these shapes are easy to
manufacture and balance, and because the outermost material
carries most of the stress. For a given maximum size, more
material is available along the entire surface of a circle than at the four corners of a square.

Apply a torque T to a round shaft, 
and the shaft will twist through an 
angle θ. Twisting means the material 
is deforming, so we have strain in the
material. The greatest shear strain,
γmax , is at the surface, while shear 

strain is zero at the center of the 
shaft. The strain increases linearly 
from the center to the surface of the 
shaft. 

We saw in Chapter 2 that materials like steel and aluminum follow Hooke's law: the ratio of normal stress to normal strain 
is Young's modulus: E=σ/ε . Young's modulus is a materials property (see Appendix B). In shear, the ratio of shear stress 
to shear strain is a materials property called shear modulus: G=τ/γ  (also found in Appendix B). Therefore, the stress in 
the shaft also varies linearly from the center to the surface of the shaft. We also saw in Chapter 2 that this stress is a 
shearing stress, so τ=0  at the center, and τ=τmax  at the surface.

Consider a small area a at a distance r from the center of the circle. If we define c 
as the distance from the centroid to the surface of the circle, then the shear stress 

at r is τ=( rc ) τsurface . Since shear stress is force divided by area, the shear force 

acting on area a is P shear(a )=τ a=
r τsurface a

c
. The torque on area a is the force 

times the distance from the centroid: T (a)=P shear r=
r2 τ surfacea

c
=
τ surface

c
a r2 . The 

total torque on the entire circular area about the centroid is the sum of the torques

on all the small areas that comprise the circle, so T=
τ surface

c ∑ a r2
.

We've seen the last part of this equation before: the polar moment of inertia of a 

circle is J=∑ a r2 , therefore T=
τ surface J

c
.

For design purposes, only the maximum stress matters, so we usually drop the subscript from the shear stress, understanding

that we mean the stress at the surface, so we write T= τ J
c

. In many problems, we know the applied torque and 

dimensions, but need the stress. Solving for stress, τ=Tc
J

.
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Example #1 – Shear stress in a solid round shaft

The torque on a ¼ inch diameter circular shaft is 5 ft.∙lb. What is the shear stress? Report the answer in ksi.

Solution The distance from the centroid to the surface is c=d
2
= 0.25in.

2
=0.125 in. . The polar moment of inertia of a 

circle is J=πd 4

32
. Shear stress τ=

Tc
J
=5ft.⋅lb. 0.125 in. 32

π(0.25 in.)4∣12in.
1ft. ∣kip

103 lb.
=19.6 ksi

Once we have the shear stress, we can compare it with the allowable shear stress for this material. If the calculated stress is
higher than the allowable stress, then we can either select a stronger material or use a larger diameter shaft.

The shear stress in a hollow shaft varies linearly from the inside surface to the outside surface. Calculate the shear stress on 

the inside surface as τ=
Tri

J
 where ri is the inside radius.

Example #2 – Shear stress in a hollow round shaft

A torque of 800 N∙m is applied to a hollow shaft. The inside diameter is 100 mm; the 
outside diameter is 120 mm. What is the shear stress on the inside and outside surfaces? 
Report the answer in MPa.

Solution The distance from the centroid to the inside surface is r i=
d i

2
=100 mm

2
=50 mm . 

The distance from the centroid to the outside surface is c=
d o

2
=120mm

2
=60 mm .

From Appendix C, the polar moment of inertia of a hollow circle is J=
π(d o

4−d i
4)

32
. We use the same J for both the inside

and the outside shear stress calculations.

Shear stress on the inside surface:

τ i=
Tr i

J
=

800 N⋅m 50 mm 32
π[(120 mm)4−(100 mm)4]∣MPa m2

106 N ∣(103mm)3

m3 =3.80 MPa .

Shear stress on the outside surface:

τ o=
Tc
J
=

800 N⋅m 60 mm 32
π[(120 mm)4−(100mm)4]∣MPa m2

106 N ∣(103mm)3

m3 =4.55 MPa

Example #2 uses J for a hollow circle. A very common mistake is to calculate J=
π(d o−d i)

4

32
 instead of J=

π(d o
4−d i

4)
32

. 

What difference does it make? Using the dimensions in the Example, calculating the wrong equation gives us

J=
π(d o−d i)

4

32
=
π(120 mm−100 mm )4

32
=15.7×103 mm 4 , while the actual polar moment of inertia is

J=
π(d o

4−d i
4)

32
=
π ((120 mm )4−(100 mm )4)

32
=10,540×103 mm 4 . The mistaken value is only 0.15% of the actual value. 

Since J is in the denominator, using the wrong formula for J will give you a shear stress that is 670 times too big. In most 
industries, a mistake this large is significant.
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In some problems, we know the applied torque and the shear strength of the material, and we need to calculate the minimum

diameter that will work. Write the shear stress equation algebraically, substituting 
π d 4

32
 for J and 

d
2

 for c. Now rewrite 

the equation to solve for diameter: d= 3√algebraic expression .

Angle of Twist in a Round Shaft

Normal strain is defined as the change in length of tensile 
member divided by its original length: ε=δ/ L . We can 
define shear strain on a torsion member as the change in 
location of a point on the surface of the shaft divided by the 
length of the shaft: γ=δshear/ L .

The angle of twist, θ, is measured in radians, so we can 
substitute δshear=c θ . Now the shear strain is γ=cθ/ L . 
Substitute this value in the equation for shear modulus, and

G= τ
γ
= τL

c θ
. Rewrite the equation to find the angle of twist

θ= τ L
G c

.

Since shear stress τ=Tc
J

, we can substitute this expression into the angle of twist equation to get θ= τ L
G c

=Tc
J

L
Gc
= TL

JG
.

Example #3 – Twist in a solid round shaft

A solid round aluminum shaft has a maximum allowable shear stress of 80 MPa. The shaft is 10 cm in diameter and 1 m 
long. What is the angle of twist? Report the answer in radians and in degrees.

Solution From Appendix B, the shear modulus of aluminum is G=28×103MPa . The angle of twist is

θ= τ L
Gc

= 80 MPa 1 m

28×103 MPa
1
2
(10cm)∣100cm

m
=0.057 rad

Convert to degrees using the conversion button on your calculator, or use the Factor-Label Method of Unit Conversion:
0.057rad∣180°

π rad
=3.3°

Example #4 – Twist in a hollow round shaft

A hollow round steel shaft has a torque of 600 ft.lb. The shaft has an outside diameter of 1.25 in., an inside diameter of 
1.10 in.,  and a length of 36 in. What is the angle of twist? Report the answer in degrees.

Solution From Appendix B, the shear modulus of steel is G=12,000 ksi . The angle of twist is

θ=T L
JG

= 32T L

π(do
4−d i

4)G
= 32⋅600 ft.lb.⋅36 in. in.2

π[(1.25in.)4−(1.10 in.)4 ]12,000 kip∣ kip

103 lb.∣12 in.
ft. ∣180°

π rad
=12.9°

Looking at the equations, you can see that the angle of twist is directly proportional to length: if you double the length of the
shaft, the angle of twist doubles. In a tensile member, if you double the length the elongation doubles. Shear stress is 
independent of length, just as normal stress is independent of the length of a tensile member.
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Chapter 7: Torsion in Round Shafts

Stress Concentration in Torsion

If a shaft has a uniform diameter along its length, then the maximum shear stress at the surface is τ=Tc
J

. Many shafts in 

machines have different diameters in different locations, such as at the flange of an axle shaft, or adjacent to a bearing 
surface. A sudden change in diameter creates a stress concentration. The maximum stress in the smaller diameter section, at 

the base of the fillet, is τ=K Tc
J

 where K is the stress concentration factor. Other dimensional changes, such as keyways 

and transverse through-holes, also create stress concentrations in shafts.

Look at the diagram of the shaft: the 
fillet radius meets the flat face of the 
large diameter portion of the shaft. The 
two shaft diameters and fillet radius are 
all independent variables, so the stress 
concentration graph has several curves, 
each for a different ratio of shaft 
diameters. Use a five-step process for 
calculating the maximum shear stress at 
the stress concentration site:

Step 1 Divide the fillet radius by the 
smaller shaft diameter find the ratio r/d.

Step 2 Divide the larger shaft diameter 
by the smaller shaft diameter find the 
ratio D/d.

Step 3 Using these two values, find the 
value of K from the graph. If your 
calculated D/d does not match the 
values on the graph, then estimate the 
value between the curves. For example, 
if r/d = 0.06 and D/d = 1.15, then 
K≈1.35.

Step 4 Calculate c and J using the 
smaller shaft diameter.

Step 5 Calculate the maximum stress 

using τ=K Tc
J

.

Example #5 – Stress concentration in a stepped shaft: fnd the stress

A 2¼ inch diameter shaft is welded to a 3 inch diameter shaft. The weld bead is ground to a radius of 0.125 inches. If the 
torque is 600 ft.lb., what is the maximum shear stress at the fillet? Report the answer in ksi.

Solution Calculate the ratios 
D
d
= 3in.

2.25in.
=1.33  and 

r
d
=0.125 in.

2.25in.
=0.056 . Use the 1.33 line on the graph to find the 

stress concentration factor K≈1.65 .    τmax=K
Tc
J
=K T

d
2

32

πd 4
=16 K T

πd3
=16⋅1.65⋅600ft.⋅lb.

π(2.25 in.)3 ∣12 in.
ft. ∣ kip

103 lb.
=5.31ksi
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Chapter 7: Torsion in Round Shafts

We can compare the calculated shear stress in Example #5 with the allowable shear stress of the material to determine 
whether the design is safe.

What if want to find the smallest acceptable radius of a stepped shaft, given the shaft diameters, torque, and allowable shear 
stress for the material?

Example #6 – Stress concentration in a stepped shaft: fnd the radius

A 4 cm inch diameter shaft is welded to a 6 cm diameter shaft. The torque is 1.5 kN∙m and the allowable shear stress for 
the shaft material is 230 MPa. What is the smallest allowable fillet radius? Report the answer in mm.

Solution Start with the shear stress equation, solving for K.

τmax = K Tc
J
= K T d

2
32

π d4 = K 16T

π d 3

K =
τmaxπd 3

16T
=

230 MPaπ(4 cm)3

16 1.5 kN∙m ∣ m3

(100cm )3∣ 103 kN

MPa  m2 =1.93

Next, calculate the ratio 
D
d
=6 cm

4cm
=1.50

Knowing K and D/d, use the chart to find 
r
d
≈0.03  then solve for radius r≈0.03 d=0.03⋅4 cm∣10mm

cm
=1.2 mm

Stress concentration problems with stepped shafts loaded in torsion involve variables r, d, D, T, K, and τ. Like previous 
problems in this book, if you know all but one of the variables you can calculate the remaining variable.

Key Equations

Shear stress on the surface of a round solid or hollow shaft is the torque times the distance from the center to the outside 

surface, divided by the polar moment of inertia: τ=Tc
J

The angle of twist of a round solid or hollow shaft can be calculated with θ= τ L
G c

 or with θ= TL
JG

, depending on the 

available input variables.

With a stepped shaft, the maximum stress is τ=K Tc
J

 where K is the stress concentration factor. Use the values of c and J 

for the smaller diameter shaft.
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Chapter 8: Beam Reactions, Shear Diagrams, and Moment Diagrams
Sign Convention

In Statics, we learned how to calculate forces and moments acting on solid objects using two important 
equations: the sum of the forces in a given direction is zero, and the sum of the moments about a given 
point is zero. To use these equations effectively, we need to define positive and negative directions for force
and moment. In this chapter, horizontal forces are defined as positive to the right; vertical forces are defined
as positive upward; and moments are defined as positive counterclockwise (the right hand rule).

Loads on Beams

The way a part is loaded determines whether it is called a tensile or compressive 
member, a torsional shaft, or a beam. As we saw in Chapter 2, if you take a steel 
rod and pull it lengthwise with a load P, the rod will develop a tensile stress
σ=P /A  where A is the cross-sectional area of the rod. Loading the rod in tension

parallel to its axis makes the rod a tensile member; loading it in compression 
parallel to its axis makes it a compressive member. As we saw in Chapter 7, if you
twist the steel rod with torque T, then we call it a torsional shaft.

If loading is perpendicular (transverse) to its axis so that the rod bends, then the rod is called a beam. You can load a beam 
with point loads, uniformly distributed loads, or nonuniformly distributed loads. A person standing on a wooden board is an 
example of a point load on a beam, while a person lying down on a wooden board is an example of a distributed load. A 
point load P could be the weight of an object sitting on the beam, or it could be a load applied by a cable or rod attached to 
the beam at that point.

The beam has to be supported somehow. A simply-supported 
beam has two vertical supports, typically a pinned support at one 
end and a roller support at the other. The lefthand support point is 
labeled A, and the righthand support point is labeled B. In the load
diagram, the triangle at point A represents a pinned support, which
allows the beam to rotate about that point, like a door on a hinge. 
A pinned support may have vertical and horizontal reaction forces.

The circle at point B represents a roller support, allowing the 
beam to move horizontally. Since the beam is not restrained at the 
roller in the x direction, reaction force R Bx=0  and we do not 
need to include this reaction force in the diagram.

A cantilever beam is embedded in a wall, so the beam has reaction
forces as well as a reaction moment.

In this chapter's beam problems, there are no applied 
horizontal forces, so the horizontal reaction force is 
zero. We can simplify the free body diagrams by 
leaving out the horizontal reaction force, and by 
labeling the vertical reaction forces as RA and RB. 

Also, we can leave the triangle, circle, or “wall” symbol
in place to remind us of the original support condition. 
Strictly speaking, it's not a free-body diagram of the 
beam, but you can think of it as a free body diagram of 
the beam support, separated from the rest of the 
universe at the base of the support.
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Chapter 8: Beam Reactions, Shear Diagrams, and Moment Diagrams

The weight of a beam is a uniform distributed load. The weight per unit length, w, typically 
has units of lb./ft., kips/ft., or kN/m. The total weight of the beam, W, is the weight per unit 
length times the length: W=wL , typically in units of lb., kips, or kN.

Consider a wide-flange beam, or “W-beam,” having a cross-section that looks like a Courier 
font capital letter I. The U.S. Customary W-beam designation system has two numbers: the 
first is the nominal depth, and the second is the weight per unit length.

For example, a W24×162 beam has a nominal depth of 24 inches and a weight per unit length w=162 lb./ft.  If the beam is

10 feet long, then the total weight, W, of the beam is W=wL=162 lb.
ft.

10 ft.=1,620 lb.

In Canada, W-beams are specified in SI (metric) units. These beams are designated by mass, not weight: a W250×115 wide 
flange beam has a nominal depth of 250 mm and a mass per unit length of 115 kg/m. From Newton’s Second Law,
force=mass×acceleration , or in this case, weight=mass×acceleration of gravity . The SI unit of force and weight is the 

newton (N), defined as 1N=1 kg m
s2 , and the acceleration of gravity is 9.81 m/s2 . The weight per unit length of a 

W250×115 wide-flange beam is w=115 kg
m

9.81m
s2 ∣N s2

kg m ∣ kN
103 N

=1.13kN/m . If the beam is 4 m long, then the total 

weight of the beam is W=wL=1.13kN
m

4 m=4.51 kN .

You can also calculate the weight per unit length from the cross-sectional area and the specific weight of the material. 
Specific weight is weight divided by volume: γ=W /V . The volume of a beam of uniform cross-section is the cross-

sectional area times the length: V=A⋅L . Combining, γ=W
V
= W

A⋅L
 or γ⋅A=W

L
. Weight per unit length w=W

L
=γ⋅A .

Example #1 – Weight per unit length of a steel rod

What is the weight per unit length of a 1 inch diameter steel rod? Report the answer in lb./ft.

Solution The cross-sectional area of a circle A= π
4

d 2
. From Appendix B, the specific weight of steel is 0.284 lb./in.3

Weight per unit length w=γ⋅A=γπd 2

4
=0.284 lb.

in.3
π(1in.)2

4 ∣12 in.
ft.

=2.68lb./ft.

A distributed load may run the length of the beam (like 
the beam's weight), may run along a portion of the beam, 
or may be nonuniform.

Reactions for Simply-Supported Simple Beams

You can calculate the reaction forces for a symmetrically-loaded, simply-supported beam by dividing the total load by 2, 
because each end of the beam carries half the load. The reactions for the beam with a point load are RA=RB=P /2 . 
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Example #2 – Reaction forces due to a point load

Calculate the reaction forces RA and RB for a beam with a 30 kN load at the midspan.

Solution Divide the total load by 2 to obtain the reaction forces,

RA=RB=
P
2
=30 kN

2
=15 kN

A simply-supported beam with a uniform distributed load also has a symmetrical loading pattern. Divide the total load on 
the beam by 2 to find the reaction forces.

Example #3 – Reaction forces due to a uniform distributed load

Calculate the reaction forces RA and RB for a 10-ft. beam with a 480 lb./ft. uniformly 
distributed load. Report the answer in kips.

Solution Multiply the uniform distributed load by the length to find the total load on 
the beam: W=wL . Divide the total load by 2 to obtain the reaction forces,

RA=RB=
W
2
=wL

2
= 480lb.

ft.
10 ft. 1

2∣ kip
1000 lb.

=2.4 kips

For beams with nonsymmetrical loading, we need two equations 
from Statics: the sum of the vertical forces equals zero, and the 
sum of the moments about a point equals zero. The moment about 
a point is the force acting on an object times the perpendicular 
distance from the force to the pivot point. Whether the object is a 
blob or a beam, the moment about point A is M A=P⋅x .

You can pick a pivot point at either end of a simply-supported beam. Most students find it easier to select the left end of the 
beam, point A. Since moment has a magnitude and a direction (clockwise or counterclockwise), we need to establish a 
convention for positive and negative moments. We’ll select counterclockwise as positive, symbolized as , and start 
adding up the moments about point A.

The load acts at a distance x from point A. Think of point A as a hinge point…the load 
causes the beam to rotate clockwise about point A, so the moment is negative. The reaction
force RB acts at a distance L from point A, and causes the beam to rotate counterclockwise 
about point A, so the moment is positive. The moment about point A is 

∑M A=0=−Px+RB L . Now solve for the reaction force RB=
Px
L

. Use the sum of the 

forces in the vertical direction to calculate the other reaction force.

Forces have magnitude and direction; pick upwards as positive, so ∑ F y=0=RA−P+RB . Now solve for the reaction 
force RA=P−RB .
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Example #4 – Reaction forces due to a point load

Calculate the reaction forces RA and RB for this simply-supported beam.

Solution Redraw the diagram, marking the distances to all loads and reactions from point
A.

The moment about point A is ∑M A=0=−40 kN⋅3 m+RB⋅10 m .

Rewrite the equation to find the reaction force RB=
40 kN⋅3 m

10 m
=12 kN . 

Use the sum of the forces in the vertical direction to calculate the other reaction force:

∑ F y=0=RA−40 kN+12 kN . 

Rewrite the equation to find the reaction force RA=40 kN−12 kN=28 kN .

You can check the answer by solving the sum of the moments about point B.

Most of the applied load is supported by the left end of the
beam. Intuitively, this makes sense because the load is closer
to the left end of the beam. Flip the beam upside down and it
looks like two children on a see-saw: the pivot point has to
be closer to the heavier child in order to balance the see-saw.

Use the same technique for a simply-supported beam with multiple point loads.

Example #5 – Reaction forces due to 2 point loads

Calculate the reaction forces RA and RB for a beam with two point loads.

Solution Redraw the diagram, marking the distances to all loads and reactions from 
point A. This step may seem to be a waste of time, but as the loading conditions 
become more complicated, it becomes more important to redimension the drawing, in 
order to keep track of the distances used in the Sum of the Moments calculation.

The moment about point A is ∑M A=0=−5 lb.⋅3 in.−12 lb.⋅6 in.+RB⋅10 in.

Rewrite the equation to find the reaction force RB=
5lb.⋅3in.+12 lb.⋅6 in.

10 in.
=8.7 lb.

Sum of the forces ∑ F y=0=RA−5lb.−12 lb.+8.7lb.

Rewrite the equation to find the reaction force RA=5lb.+12 lb.−8.7 lb.=8.3 lb.

If a uniformly distributed load is not symmetrical, then
we need to convert the distributed load into a point 
load equivalent to the total load W=wL1  where L1 is 
the length of the distributed load. The equivalent point 
load is located at the centroid of the distributed load…
the center of the rectangle. Use the equivalent load 
diagram for calculating the reaction forces.
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Example #6 – Equivalent load diagram

Calculate the reaction forces RA and RB for a beam 
with a uniform distributed load of 800 N/m. Report 
the result in N.

Solution Draw an equivalent load diagram, placing 
the equivalent load at the centroid of the distributed 
load. Use the equivalent load diagram to find the 
reaction forces.

The distributed load runs for 2m, so the location of the equivalent load is 1m from the left end of the distributed load, or 

1.8m from point A. The equivalent load W=wL=800 N⋅2 m
m

=1600 N .

The moment about point A is ∑M A=0=−1600 N⋅1.8 m+RB⋅6 m .

Rewrite the equation to find the reaction force RB=
1600 N⋅1.8 m

6 m
=480 N .

Sum of the forces ∑ F y=0=RA−1600 N+480 N . Solve for the reaction force RA=1600 N−480 N=1120 N .

Use the same approach for a nonuniformly distributed 
load. Again, the location of the equivalent load is at the 
centroid of the distributed load. The centroid of a 
triangle is one third of the distance from the wide end of 
the triangle, so the location of the equivalent load is one 
third of the distance from the right end of this beam, or 
two thirds of the distance from the left end.

The load varies from 0 at the left end to w at the right 
end; therefore, the total load is the average of these

loads times the beam length: W=(0+w
2 ) L= wL

2
. If the beam has point loads and distributed loads, draw an equivalent 

load diagram with the applied point loads and the equivalent point loads, then solve like Example #5.

Reactions for Overhanging Beams

A simply-supported beam is supported by a pinned connection at one end and a roller support at the other; all applied loads 
lie between these two points. An overhanging beam extends beyond one or both supports. The solution method is the same 
as for simply-supported beams: use the sum of the moments about one of the support points to find the reaction at the other 
support point.
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Example #7 – Overhanging beam

Calculate the reaction forces RA and RB for an overhanging beam with two point 
loads.

Solution Redraw the diagram, marking the distances to all loads and reactions from
point A.

The moment about point A is ∑M A=0=50 kN⋅5 m−30 kN⋅11m+RB⋅15 m . 
Notice the 50 kN load produces a positive (counterclockwise) moment about point 
A, while the 30 kN load produces a negative (clockwise) moment about point A.

Rewrite the equation to find the reaction force

RB=
−50 kN⋅5 m+30 kN⋅11m

15 m
=5.33 kN

Sum of the forces ∑ F y=0=RA−50 kN−30 kN+5.33 kN . Solve for the 
reaction force R A=50 kN+30 kN−5.33 kN=74.67 kN .

Notice that label A is at the support, not at the end of the beam, because it's more useful to calculate the sum of the moments
about the support point, not about the free end.

Solve for the reactions to a distributed load on an overhanging beam the same way as for a distributed load on a simply-
supported beam: draw an equivalent load diagram, then use the sum of the moments and the sum of the forces to find the 
reactions.

Example #8 – Overhanging beam

Calculate the reaction forces RA and RB for an 
overhanging beam with a uniform distributed 
load.

Solution Draw an equivalent load diagram, 
marking the distances to all loads and reactions 
from point A. We do not need the dimensions to 
the ends of the overhangs, because there are no 
loads outside of the two supports.

The distributed load runs for 9 ft., so the location of the equivalent load is 4.5 ft. from the left end of the distributed load, 

or 1.5 ft. to the right of point A. The equivalent load W=wL=60lb.⋅9ft.
ft.

=540 lb.

The moment about point A is ∑M A=0=−540 lb.⋅1.5 ft.+RB⋅6ft.

Rewrite the equation to find the reaction force RB=
540lb.⋅1.5 ft.

6 ft.
=135 lb.

Sum of the forces ∑ F y=0=RA−540 lb.+135 lb. . Solve for the reaction force RA=540 lb.−135lb.=405 lb. .
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Reactions for Cantilever Beams

A cantilever beam with a single support has a reaction force and a reaction moment. 
The reaction force RA equals the sum of the applied forces on the beam, so
R A=P=3 kN .

The sum of the moments about point A is zero. With the sign convention of 
counterclockwise = positive, reaction moment MA is positive, and the moment created 
by the applied 3 kN load is negative. Summing the moments at the wall, we get

∑ M wall=0=M A−P⋅x → M A=P⋅x=3kN⋅4 m=12 kN⋅m  

If the wall is at the right end of the beam instead, then the reaction force calculation is 
the same as before: R B=P=5 kips

The sum of the moments about point B is zero. Keeping the same counterclockwise = 
positive sign convention, we draw MB counterclockwise. The sum of the two moments 
at the wall give us ∑ M wall=0=M B+P⋅x  so
M B=−P⋅x=−5kips⋅7ft.=−35 kip⋅ft.

The minus sign tells us that we drew the direction of MB backwards: the moment reaction at the wall is actually clockwise.

Shear Diagrams

When we calculate reaction forces and torques on tension members, torsion members, 
and beams, we are calculating external forces and torques. Unless the material has no 
strength at all, the material resists these external loads by developing internal loads. 
Apply a torque of 25 ft.lb. to each end of a ½ inch diameter rod, and a resisting torque of 
25 ft.lb. exists within the rod all along its length. Apply a tensile force of 400 N to each 
end of a 2 cm diameter rod, and a resisting tensile force of 400N exists within the rod all 
along its length. Beams in bending also develop internal forces to resist external forces. 
Since the external forces on beams are transverse (perpendicular to the axis of the beam), 
the internal resisting forces are also transverse forces.

Imagine a simply-supported beam with a point load at the mid-span. Cut the beam to the 
left of the point load, and draw a free-body diagram of the beam segment. In a free-body 
diagram, forces must balance. Therefore, a downward force at the cut edge balances the 
upward support reaction RA. We call this shear force V. It is a shear force because the 
force acts parallel to a surface (the cut edge of the beam).

The forces RA and V are in balance (equal in value; opposite in sign), but our segment 
wants to spin clockwise about point A. To counteract this tendency to spin, a moment M 
develops within the beam to prevent this rotation. The moment equals the shear force 
times its distance from point A.

Cut the beam to the right of the point load, and draw the free-body diagram. Since P is larger than RA, force V points 
upwards.
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Example #9 – Shear load in a beam

Calculate the shear forces in this beam to the left and to the right of the 30 kN point 
load.

Solution The loading is symmetrical, so RA=RB=
P
2
=30 kN

2
=15 kN .

Use the sum of the forces to find V.

Between support A and point load P, ∑ F y=0=RA−V 1 .

Solving for shear load, V 1=−RA=−15 kN .

Between point load P and support B, ∑ F y=0=RA−P+V 2 .

Solving for shear load, V 2=−RA+P=−15 kN+30 kN=15 kN .

We can sketch V as a function of location along the beam using a 
Shear Diagram. Draw vertical construction lines below the load 
diagram wherever the applied loads and reactions occur. Draw a 
horizontal construction line, indicating zero shear load. Next, draw the 
value of V along the length of the beam, as follows:

Step 1 Starting at the left side of the shear diagram, go up 15 kN, 
because RA is 15 kN upwards.

Step 2 There are no additional loads on the beam until you get to the 
midspan, so the shear value remains at 15 kN.

Step 3 The applied load at the midspan is 30 kN downwards, therefore 
the shear load is 15 kN−30 kN=−15 kN .

Step 4 There are no additional loads on the beam until you get to point 
B, so the shear value remains at -15kN.

Step 5 At point B, the reaction force RB = 15 kN upwards, therefore the
shear load is −15 kN+15 kN=0 . If you don’t get to 0, you know you
made a mistake someplace.

Finish the shear diagram by shading the areas between your line and 
the horizontal zero shear line. Mark all significant points (anywhere 
the shear line changes direction). In the next chapter, we will use the 
maximum absolute value of shear load, ∣V∣max , to calculate the 
maximum shear stress in the beam.
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A point load at the midspan of a simply-supported beam produces identical reaction forces and a symmetric shear diagram 
with two rectangles. If the point load is not at the midspan, use sum of the moments and sum of the forces to calculate the 
reaction forces. Draw vertical construction lines below the applied loads and reaction forces, draw a horizontal line at zero 
shear, then draw the shear value along the length of the beam.

Example #10 – V diagram for 1 point load

Draw a complete shear diagram for a simply-supported 8 ft. beam with a 100 lb. 
point load 2 ft. to the right of point A.

Solution Use sum of the moments and sum of the forces to find the reaction 
forces RA and RB.

Starting the shear diagram at zero shear, go up RA=75lb.  at point A. There are 
no loads between point A and the applied point load, so the shear load does not 
change. Draw a horizontal line to the right, until you reach the point load. Draw 
a vertical line down 100 lb., reaching a value V=−25lb. There are no loads 
between the point load and point B, so the shear load does not change.

Draw a horizontal line to the right, until you reach point B. The reaction force at B is 25 lb. upwards, so draw a vertical 
line up 25 lb., reaching a value V=0 . Again we have two rectangles, but they are not symmetric; the beam carries three 
times as much shear load to the left of the point load than it does to the right.

Multiple point loads produce a stepped shear diagram.

Example #11 – V diagram for 3 point loads

Draw a complete shear diagram for a simply-supported 8 ft. beam with 100 lb.
point loads every 2 ft. along the length.

Solution The loading is symmetrical, so the reaction forces equal half the total
applied load.

Calculate the shear values as:

V 1=RA=150lb.

V 2=V 1−100 lb.=50 lb.

V 3=V 2−100 lb.=−50lb.

V 4=V 3−100 lb.=−150 lb.

V 5=V 4+RB=−150lb.+150 lb.=0               In this problem, ∣V∣max=150 lb.

A uniformly distributed load is like an infinite number of small point loads along the length of the beam, so the shear 
diagram is like a stepped multiple point load shear diagram with infinitely small steps.
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Example #12 – V diagram for a uniformly distributed load

Draw a complete shear diagram for a simply-supported 4 m beam with a 
uniformly distributed load of 3 kN/m.

Solution The loading is symmetrical, so the reaction forces equal half the total 

applied load. RA=RB=
W
2
= wL

2
= 3kN⋅4 m

m 2
=6 kN .

A complete shear diagram includes the values of the shear at locations of 
applied point loads and reaction forces.

V 1=RA=6kN

V 2=V 1−
3kN

m
4m=−6kN

V 3=V 2+RB=−6kN+6 kN=0               In this problem, ∣V∣max=6kN

If the uniformly distributed load does not extend along the entire length of the beam, then draw an equivalent load diagram 
to find the reaction forces. Go back to the original load diagram to draw the shear diagram; do not use the equivalent load 
diagram to draw the shear diagram.

Example #13 – V diagram for a uniform
distributed load

Draw a complete shear diagram for a simply-
supported 20 ft. beam which has a uniform 
distributed load of 2 kips/ft. running from the 
left end for 6 feet.

Solution Draw an equivalent load diagram, 
placing the equivalent load at the centroid of 
the distributed load. Use the equivalent load 
diagram to find the reaction forces.

The distributed load runs for 6 ft., so the location of the equivalent load is 3 ft. from the left end of the beam.

The equivalent load W=wL=2 kips⋅6ft.
ft.

=12 kips .

The moment about point A is ∑M A=0=−12 kips⋅3ft.+RB⋅20 ft. .

Rewrite the equation to find the reaction force RB=
12 kips⋅3ft.

20 ft.
=1.8 kips .

Sum of the forces ∑ F y=0=RA−12 kips+1.8 kips . Solve for the reaction force RA=12 kips−1.8 kips=10.2 kips .

Draw construction lines down from the original load diagram wherever a point load or reaction exists, and wherever a 
distributed load starts or stops. Calculate the shear loads at these points.

V 1=RA=10.2 kips      V 2=V 1−
2 kips

ft.
6 ft.=−1.8 kips      V 3=V 2+RB=−1.8 kips+1.8 kips=0      ∣V∣max=10.2kips

Multiple point loads of increasing load will give you an asymmetric stepped shear diagram.
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Example #14 – V diagram for 3 point loads

Draw a complete shear diagram for a simply-supported 4 m beam which has a 
three different point loads as shown in the load diagram.

Solution Use sum of the moments and sum of the forces to find RA and RB.

Calculate the shear loads as follows:

V 1=RA=250 N

V 2=V 1−100 N=150 N

V 3=V 2−200 N=−50 N

V 4=V 3−300 N=−350 N

V 5=V 4+RB=−350 N+350 N=0

In this problem, ∣V∣max=350kN

A nonuniformly distributed load produces two different reaction forces. Draw an equivalent load diagram to find the 
reaction forces. Go back to the original load diagram to draw the shear diagram. A wedge-shaped nonuniformly distributed 
load is like an infinite number of small point loads of increasing magnitude along the length of the beam, so the shear 
diagram is like the previous stepped multiple point load shear diagram in which the slope of the curve increases 
parabolically.

Example #15 – V diagram for a 
nonuniform distributed load

Draw a complete shear diagram for a simply-
supported 6 m beam which has a wedge-shaped 
nonuniform distributed load of 0 kN/m at the left 
end of the beam to 5 kN/m at the right end of the 
beam.

Solution Draw an equivalent load diagram, placing
the equivalent load at the centroid of the 
distributed load. The centroid of a triangle lies 
two-thirds of the distance from the point of the 
triangle. Use the equivalent load diagram to find 
the reaction forces.

The centroid is located at x= 2
3

L= 2⋅6 m
3

=4 m ,measuring from the left end of the beam. The equivalent load is the 

average of the minimum and maximum distributed loads times the length of the distributed load:

W=
(0+5)kN
2 m

6 m=15 kN .

The moment about point A is ∑ M A=0=−15 kN⋅4 m+RB⋅6 m . Rewrite the equation to find the reaction force

R B=
15 kN⋅4 m

6 m
=10 kN . Sum of the forces ∑ F y=0=RA−15 kN+10 kN . Solve for R A=15 kN−10 kN=5 kN .

Draw construction lines down from the original load diagram at the two reaction forces. Calculate the shear loads at these 
points.

V 1=R A=5 kN                V 2=V 1−15 kN=−10 kN                V 3=V 2+RB=−10 kN+10 kN=0            ∣V∣ max=10 kN
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The shear line crosses the axis where the area of the distributed load equals RA. The area of 

the distributed load is one half the base times the height of the triangle, or a= xh
2

. By 

similar triangles, the height of the little triangle h= x
L

w , so a=
x2 w
2 L

=RA . Solving,

x=√ 2 LRA

w
=√2⋅6 m⋅5 kN m

5 kN
=3.46 m . The shear line crosses the axis 3.46 m from the 

left end of the beam.

Look at the shear diagrams, and you can see that point loads create rectangles, uniform distributed loads create triangles, 
and wedge-shaped (triangular) distributed loads create parabolas.

Shear diagrams for cantilever beams follow the same rules as for simply supported beams. First, find the reactions; next, 
draw the shear diagram using construction lines wherever a point load occurs or a distributed load starts or stops.

Example #16 – V diagram for a point load on a cantilever beam 

Draw a complete shear diagram for a 10 foot cantilever beam having a 5 kip 
point load 8 feet from the wall.

Solution Since there is no reaction force at the left end, there is no shear load 
until we get to the applied load. Then, the shear load is negative (downward) 
until we get to the support, where RB is positive (upward).

The reaction moment at the wall is ∑ M wall=0=M B+5 kips⋅8ft.  therefore
M B=−5 kips⋅8ft.=−40 kip ft. . The negative sign tells us that the reaction 

moment is drawn backwards; it is actually a clockwise reaction moment.

Sum of the forces ∑ F y=0=RB−5 kips  therefore RB=5kips .

Draw construction lines down from the original load diagram at the point load and the reaction force. Calculate the shear 
loads at these points.

V 1=P=−5 kips           V 2=V 1+5 kips=0            ∣V∣ max=5kips

If the wall is at the left, then ∑ M wall=0=M A−5 kips⋅8ft.  so
M A=5 kips⋅8ft.=40 kip ft. . The positive sign tells us that the reaction moment 

is drawn correctly, counterclockwise.

Sum of the forces ∑ F y=0=RA−5 kips  therefore R A=5 kips , the same 
reaction force as before.

The shear diagram looks different; instead of hanging below the axis, the shear 
curve lies above the axis. Go up 5 kips at the wall, straight across, then down 5 
kips at the applied load.

V 1=R A=5 kips           V 2=V 1−5 kips=0            ∣V∣ max=5kips
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Example #17 – V diagram for a 
nonuniform distributed load on a 
cantilever beam

The beam in Example #15 is supported as a 
cantilever beam. Draw a complete shear 
diagram.

Solution Draw an equivalent load diagram as 
in Example #15 to find R B=15kN  and
M B=−15 kN×2 m=−30 kN⋅m .

The path of the shear curve is identical to the 
curve in Example #15, although the starting 
and ending points have different values.

With a shear diagram, we can identify the location and size of the largest shear load in a beam. Therefore, we know the 
location of the largest shear stress, and we can calculate the value of this stress. Once we know the actual stress in the 
material, we can compare this values with the shear strength of the material, and we can know whether the beam will fail in 
shear. Shear diagrams are necessary for drawing bending moment diagrams (“moment diagrams”, for short), which we can 
use to identify the location and size of bending stresses that develop within beams. We can compare the actual bending 
stresses with the yield strength of the material, and we can know whether the beam will fail in bending.
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Moment Diagrams

The moment about a point along a beam is defined as the 
distance from that point to a force acting perpendicular to 
the beam, so the units are force × distance: lb.⋅ft.  (or
ft.⋅lb.  – the order does not matter), lb.⋅in. , kip⋅ft. , N⋅m ,
or kN⋅m . We can graph the value of the bending moment 
along a beam by drawing a moment diagram.

To draw a moment diagram, sketch the value of the moment
produced by the shear force V times the distance from the 
left end of the beam. At the first meter, V = 15 kN, so 
moment M 1=15 kN×1m=15 kN⋅m .

At 2 m, M 2=M 1+15 kN×1 m=30 kN⋅m

At 3 m, M 3=M 2+15 kN×1 m=45 kN⋅m

At 4 m, M 4=M 3+15 kN×1 m=60 kN⋅m

At 5 m, M 5=M 4−15 kN×1 m=45 kN⋅m

At 6 m, M 6=M 5−15 kN×1 m=30 kN⋅m

At 7 m, M 7=M 6−15 kN×1 m=15 kN⋅m

At 8 m, M 8=M 7−15 kN×1m=0 kN⋅m

Shade the finished diagram, marking all significant points 
(places where the moment line changes direction). The most
important point is the maximum absolute value of M; this is 
where the maximum bending stress occurs in the beam.

The value of the moment diagram at any point equals the 
area of the shear diagram up to that point. The shear 
diagram has positive areas above the zero line, and negative 
areas below the zero line. When the shear area is positive, 
the moment increases; when the shear area is negative, the 
moment decreases.

You can draw the moment diagram faster by calculating the 
area of the left-hand rectangle in the shear diagram:
M max=15 kN×4 m=60 kN⋅m . Verify that M 8=0  by 

subtracting the area of the second rectangle in the shear 
diagram: M 8=M max−15 kN×4 m=0 kN⋅m .
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It is a good idea to check the moment at point B. If you end up with a value other 
than 0, then you know there is a mistake someplace.* Most likely, the error is in 
the reaction forces. You can draw a shear diagram that works with the wrong 
reaction forces, but you cannot draw a good moment diagram if RA and RB are 
wrong. This is an amazing feature of moment diagrams – they tell you if your 
solution is right!

If the point load is not at the midspan, then the maximum moment will also be 
offset. In this example, the maximum moment is the area of the shear diagram up 
to the point load: M max=RA⋅L1 .

Multiple point loads will give you multiple rectangles on the shear diagram, and 
multiple triangles on the moment diagram.

Example #18 – V & M diagrams for 3 point loads

Draw complete shear and moment diagrams for an 8 foot long, simply-
supported beam having 100 lb. point loads every 2 feet.

Solution The loading is symmetrical, therefore the reaction forces RA and RB 
are each equal to half the total applied load.
R A=RB=(100lb.+100 lb.+100lb.)/2=150lb.

Draw construction lines down from the load diagram at each reaction force 
and applied load. The shear diagram is a series of rectangles.

Calculate the values on the moment diagram as follows:

M 1=2ft.×150lb.=300 ft.⋅lb.

M 2=M 1+2ft.×50 lb.=400ft.⋅lb.

M 3=M 2−2ft.×50 lb.=300 ft.⋅lb.

M 4=M 3−2ft.×150lb.=0ft.⋅lb.                           ∣M∣ max=400ft.⋅lb.

* Zero...or close to zero relative to the magnitude of the numbers on your moment diagram. If Mmax is 400 ft.∙lb., and you land at 10 
ft.∙lb. instead of zero, look for a mistake in the calculations. If  Mmax is 40,000 ft.∙lb., and you land at 10 ft.∙lb. instead of zero, the 
difference is round-off error and you can ignore it.
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A uniformly distributed load produces a parabolic moment diagram. Close to point A, a large shear produces a steep slope 
in the moment diagram. As you approach the midspan, the smaller shear produces a shallower slope in the moment diagram.
Beyond the midspan, an increasingly negative shear produces an increasingly steeper slope downwards.

The maximum moment equals the area of the left-hand triangle. Subtract the area of the right-hand triangle to get the 
moment at point B. 

Example #19 – V & M diagrams for a uniform distributed load

Draw complete shear and moment diagrams for an 8 meter long, simply-
supported beam having a uniform distributed load of 3 kN/m.

Solution The loading is symmetrical, therefore the reaction forces RA and RB 

are each equal to half the total applied load. RA=RB=
3kN

m
8m
2
=12 kN

Draw construction lines down from the load diagram at each reaction force . 
The shear diagram is two triangles. Draw a construction line down from 
where the shear line crosses the zero axis.

The max. moment is equal to the area of the left-hand triangle: the base times
the height divided by 2. The base of the triangle is half the beam length, 4 m.

M max=
12 kN×4m

2
=24 kN⋅m   The moment at point B is the moment at the

midspan minus the area of the right-hand triangle.

M B=M max−
12 kN×4 m

2
=0kN⋅m

We’ve seen that a nonuniform wedge-shaped distributed load produces a parabolic shear diagram. The moment diagram 
looks like a parabola skewed to the right, with the maximum moment at the point where the shear diagram crosses the zero-
load axis.
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Example #20 – V & M diagrams for a 
nonuniform distributed load

Draw complete shear and moment diagrams for a 
12 foot long, simply-supported beam having a 
wedge-shaped nonuniform distributed load of 0 
lb./ft. at the left end of the beam and 300 lb./ft. at 
the right end of the beam.

Solution Draw an equivalent load diagram, placing
the equivalent point load at the centroid of the 
distributed load. The centroid of a triangle lies 2/3 
of the distance from the tip of the triangle. Use the 
equivalent load diagram to find the reaction forces.

The centroid of the triangular load profile lies at

x= 2
3

L=2⋅12 ft.
3

=8ft. , measuring from point A.

The equivalent load is the average of the minimum

and maximum distributed loads times the length of the distributed load: W=(0+300) lb.
2 ft.

12 ft.=1800 lb.

The moment about point A is ∑M A=0=−1800 lb.⋅8ft.+RB⋅12ft. . Rewrite the equation to find the reaction force

RB=
1800 lb.⋅8ft.

12 ft.
=1200 lb.  Sum of the forces ∑ F y=0=RA−1800 lb.+1200 lb.  Solve for

RA=1800lb.−1200lb.=600lb.

Draw construction lines down from the original load diagram at the two reaction forces. Calculate the shear loads at these 
points. V 1=RA=600lb. ,  V 2=V 1−1800 lb.=−1200 lb. ,  V 3=V 2+RB=−1200 lb.+1200 lb.=0

Draw a construction line down from the shear diagram where the shear line crosses the zero axis – this construction line 
marks the location of the max. moment. We need to find the location of this point in order to calculate the max. moment.

Consider that the value of V at any point along the shear diagram equals the reaction force 
RA minus the area of the distributed load, aw: V=RA−a w . The area of the triangle-shaped 
distributed load at any point equals one-half the base times the height of the triangle. Let 
the base be x, the distance from the left end of the beam. The height is a fraction of the 

distributed load w at point B. By similar triangles, height= x
L

w , so area

a w=
1
2

x
x
L

w=
x2 w
2 L

 and shear force V=RA−
x 2w
2 L

. Where the shear line crosses the zero

line, V=0 , therefore x=√ 2 L RA

w
=√ 2⋅12ft.⋅600lb. ft.

300 lb.
=6.928ft.

The maximum moment is equal to the area of the shear diagram to the left of this 
construction line. Since the shear diagram is a parabola, the area of the shear diagram to 
the left of the construction line is 2/3 of the base of the parabola times its height.

M max=aV=
2
3

V 1 x=2⋅600lb.⋅6.928 ft.
3

=2770 ft.⋅lb.
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So far, all of the examples have shown moment diagrams with positive areas. A cantilever beam with a downward point 
load has a negative area in the moment diagram.

Example #21 – V & M diagrams for point load on a cantilever 
beam

Draw complete shear and moment diagrams for a cantilever beam having a 
point load of 5 kips, located 7 feet from the wall.

Solution By inspection, the reaction force R B=5 kips . The shear diagram is a 
rectangle, so the moment diagram will be a triangle.

∑ M wall=0=M B+5 kips×7 ft.  therefore M B=−35 kip⋅ft. . The negative 
sign tells us that the moment reaction is actually clockwise.

In this problem, ∣M∣max=35 kip⋅ft.

If the support is at the left, then the solution is a mirror image. As before, the 
reaction force R A=5 kips . ∑ M wall=0=M B−5 kips×7 ft.  therefore
M A=35 kip⋅ft. . This is the moment reaction at the wall.

A few pages ago, we said “the value of the moment diagram at any point 
equals the area of the shear diagram up to that point,” which is true if we only
have simple supports. However, the value of the moment diagram also changes
if we have an applied moment or a reaction moment.

Think about the internal shear force and moment in the 
beam a short distance from the wall. The moment in the
beam is equal and opposite to the moment at the wall, 
therefore M 1=−35kip⋅ft. , which is why the moment 
diagram starts at this value. The moment diagram 
slopes up to the right because the rectangle in the shear 
diagram is a positive area.
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The shear diagram of a cantilever beam with a uniform distributed load is a triangle. Use an equivalent load diagram to find 
the reaction force and reaction moment, then draw shear and moment diagrams below the original load diagram.

Example #22 – V & M diagrams for a 
uniform distributed load on a 
cantilever beam

Draw complete shear and moment diagrams 
for a 3 m long cantilever beam having a 
uniform distributed load of 2 kN/m along its 
length.

Solution Draw an equivalent load diagram, 
placing the equivalent point load at the 
centroid of the distributed load. The centroid 
of a rectangle lies at the halfway point. Use 
the equivalent load diagram to find the 
reaction force and reaction moment.

RB=
2 kN

m
3 m=6kN

M B=−6 kN×1.5 m=−9 kN⋅m

The shear diagram is a triangle, so the moment diagram is a parabola with ∣M∣max=9 kN⋅m .

Follow the same procedures to draw the shear and moment diagrams of an overhanging beam with a distributed load and a 
two point loads.

Example #23 – V & M 
diagrams for an 
overhanging beam

Draw complete shear and 
moment diagrams for a 36 foot 
long overhanging beam having 
a uniform distributed load and 
two point loads as shown.

Solution Draw an equivalent 
load diagram, placing the 
equivalent point load at the 
centroid of the distributed load, 
which is 9 ft. from point A.

Use the equivalent load diagram
to find the reaction forces, then 
draw the shear and moment 
diagrams below the original 
load diagram.
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Example #23, continued

R B=
36 kips⋅9 ft.+12 kips⋅18 ft.+10 kips⋅36ft.

30 ft.
=30kips , R A=36kips+12 kips+10 kips−30 kips=28 kips

Calculate the shear values: V 1=R A=28 kips , V 2=V 1−
2 kips

ft.
18 ft.=−8 kips , V 3=V 2−12kips=−20 kips ,

V 4=V 3+30 kips=10 kips , V 5=V 4−10 kips=0 kips

The moment curve starts with a parabola going up until the shear curve crosses zero; once the shear is negative, the 
moment curve drops parabolically until the end of the distributed load. In order to calculate the moment values, we need to
know where the shear curve crosses the zero line. Use similar triangles to find x, then calculate the area of the left-hand

triangle in the shear diagram: x=18ft. 28kips
36kips

=14ft.

The area of the left-hand triangle is M 1=
28 kips⋅14ft.

2
=196 kip⋅ft.  

Subtract the area of the right-hand triangle to find

M 2=M 1−
8 kips⋅4ft.

2
=180 kip⋅ft.  

Subtract the lower rectangle to find M 3=M 2−20 kips⋅12ft.=−60kip⋅ft.  Add the 
upper rectangle to find M 4=M 3+10 kips⋅6ft.=0 kip⋅ft.

In this problem, ∣M∣ max=196 kip⋅ft.

Example #24 – V & M diagrams for a nonuniform distributed load on an overhanging beam

Draw complete shear and moment 
diagrams for a 12 meter long 
overhanging beam having a uniform
distributed load and two 
nonuniform distributed loads.

Solution Draw an equivalent load 
diagram, placing the equivalent 
point loads at the centroids of the 
distributed loads (two triangular 
distributed loads and one 
rectangular distributed load).

Use the equivalent load diagram to 
find the reaction forces, then draw 
the shear and moment diagrams 
below the original load diagram.
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Example #24, continued

The equivalent loads are 
2 kN

m
3m
2
=3 kN , 

2 kN
m

5m=10kN , and 
2 kN

m
4 m
2
=4 kN .

R B=
−3kN⋅1 m+10 kN⋅2.5 m+4 kN⋅6.33 m

9 m
=5.26 kN , R A=3 kN+10 kN+4 kN−5.26 kN=11.74 kN

The shear diagram goes downward as a concave second-degree parabola under the nonuniform distributed load, straight up
at RA, downward at a diagonal under the uniform distributed load, then downward as a convex second-degree parabola 
under the nonuniform distributed load, and straight up at RB.

Calculate the shear values: V 1=
−2 kN

m
3m
2
=−3 kN , V 2=V 1+RA=8.74 kN , V 3=V 2−

2 kN
m

5m=−1.26 kN ,

V 4=V 3−
−2kN

m
4 m

2
=−5.26 kN , V 5=V 4+RB=0 kN

The moment curve goes downward as a concave third-degree parabola. To find the 
value of M1, calculate the area under the concave second-degree parabola at the left 
end of the shear diagram. From Appendix C, the area under a concave second-degree 

parabola is 
b h
3

. Since b=3 m  and h=−3 kN , M 1=
−3 kN⋅3m

3
=−3 kN⋅m

In order to calculate M2, we need to know where the shear curve crosses the zero line. 
Use similar triangles to find x, then calculate the area of the left-hand triangle in the 

shear diagram: x=5m 8.74 kN
10 kN

=4.37 m

M 2=M 1+
8.74 kN⋅4.37m

2
=16.1 kN⋅m

The base of the small triangle in the shear diagram is 5 m – 4.37 m = 0.63 m.

M 3=M 2−
1.26kN⋅0.63 m

2
=15.7kN⋅m

We could assume that M 4=0 kN⋅m  to finish the moment diagram, but it's best to 
calculate it, to be sure that there are no errors in the reaction force calculations.

The rightmost segment in the shear diagram is a rectangle and a convex second degree

parabola. From Appendix C, the area of a convex second degree parabola is 
2 b h

3
.

M 4=M 3−1.26 kN⋅4 m−2⋅4 m⋅4 kN
3

=0 kN⋅m

In this problem, ∣V max∣=8.74 kN  and ∣M max∣=16.1 kN⋅m

Some engineering solutions require an algebraic solution. Imagine you are designing a set of beams using the same general 
loading case, but the loads change from one case to the next. If you can develop an algebraic solution, then you can plug in 
the numbers for each case (perhaps with a computer program) instead of solving every case from scratch. Example #25 
shows how to create shear and moment diagrams for an algebraic problem.
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Example #25 – V & M diagrams for a point load and uniform distributed load on an overhanging 
beam

Draw complete algebraic shear and moment diagrams for an overhanging beam loaded as shown.

Solution Draw an equivalent load diagram, placing 
the equivalent point load at the centroid of the 
distributed load.

Use Sum of the Moments and Sum of the Forces to 
find the reactions at points A and B.

R B=
−P a+wb⋅0.5 b

b
=−P a

b
+w b

2

R A=P+w b−RB=P+ P a
b
+ w b

2

V 1=−P

V 2=V 1+RA=
P a
b
+wb

2

V 3=V 2−w b= P a
b
−w b

2

V 4=V 3+RB=0

M 1=−V 1 a=−P a

Use Similar Triangles to determine the base of the upper triangle. The overall height is
the weight per unit length times the distance it acts upon, bw.

x=b
V 2

b w
=

V 2

w
=

P a
b
+w b

2
w

= P a
b w

+b
2

M 2=M 1+
V 2 x

2
=−P a+

( P a
b
+w b

2 )( P a
b w

+b
2 )

2
= P2 a2

2b 2w
− P a

2
+wb 2

8

The base of the lower triangle is b−x=b−( P a
b w

+b
2 )=b

2
− P a

b w

M 3 = M 2+
V 3(b−x)

2
= M 2+

( P a
b
−w b

2 )(b2− P a
b w )

2
= M 2+

P ab
2 b

− P2 a2

b2w
−wb 2

4
+ P a b w

2b w
2

= M 2+

P a
2
− P2 a2

b2 w
−w b2

4
+ P a

2

2
= P 2a 2

2 b2 w
− P a

2
+w b2

8
+P a

2
− P a2

2b2 w
−wb 2

8
= 0

We do not know in advance whether M max=M 1  or M max=M 2 ...it depends on the values of a, b, w, and P.
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In summary, the value of 
the moment diagram at a 
given point equals the area
of the shear diagram up to 
that point. The slope of 
the moment diagram at a 
given point equals the 
value of the shear load at 
that point.

Load type Shear diagram shape Moment diagram shape

Point Rectangles Triangles

Uniform distributed Triangles Parabolas (2nd degree)

Wedge-shaped nonuniform distributed Parabolas (2nd degree) Parabolas (3rd degree)

Shear and moment diagrams are related to each other in the same way that derivatives and integrals are related to each other
in calculus. The value of the shear diagram is the slope of the moment diagram. If the shear value is positive, the moment 
diagram heads upwards. If the value of the shear diagram is negative, the moment diagram  heads downwards. If the value 
of the shear diagram is zero, then the moment value is constant. Triangles in a shear diagram create parabolic curves in the 
moment diagram.
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Solution Layout

One easy mistake to make in solving beam 
problems is to draw shear and moment 
diagrams below the equivalent load 
diagram, instead of below the actual load 
diagram. You can avoid this mistake by 
using the space below the equivalent load 
diagram for your calculations. If you do 
that, the only remaining space for the shear 
and moment diagrams is immediately below
the actual load diagram.

Key Equations

Use ∑M A=0  and ∑ F y=0  to 
find reaction forces for simply-supported 
beams.

Use ∑ M wall  and ∑ F y=0  to find
the reaction moment and reaction force for 
cantilever beams.
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Chapter 9: Stresses in Beams
In the last chapter, we learned how to draw shear and bending moment 
diagrams for beams. These diagrams tell us the location and magnitude 
of the maximum shear load and maximum bending moment. We can use
Vmax and Mmax to calculate the maximum shear stress and max. bending 
stress in a beam, then we can compare these results with the allowable 
shear stress and bending stress of the material. If the actual value is less 
than the allowable value, then the beam is safe; if the actual value is 
greater than the allowable, then we need to select a different beam.

Bending Stress in Beams

A point load at the midspan of a beam makes the beam bend. We can 
sketch a deflection diagram to show this bending. The deflection 
diagram shows the beam as if it had no depth, because it is easier to 
draw a curve than to draw a double curve with shading. A real beam has
depth, and when it is bent, the top surface shortens while the bottom 
surface lengthens...the top surface has a negative strain, while the 
bottom surface has a positive strain. Plot strain vs. depth: the strain 
varies linearly from top to bottom, and is zero at the centroidal axis.

We saw in Chapter 2 that materials like steel and 
aluminum follow Hooke's law: the ratio of stress/strain
is Young's modulus, a constant. Therefore, the stress in
the beam also varies linearly from top to bottom, and is
zero at the centroidal axis of the beam. We call this 
axis the neutral axis, where stress is zero.* This 
bending stress acts perpendicular to the cross-sectional 
area of the beam, so the stress is a normal stress; it is 
negative on the top and positive on the bottom.

We can calculate the bending stress at any position y 
from the neutral axis: the stress is proportional to the 

distance from the neutral axis, so σ=σmax
y
c

 where c 

is the distance from the neutral axis to the surface of 
the beam. This is the same meaning of c that we used 
in torsion problems.

Think about a very small area a at a distance y from the neutral axis. Since stress is force divided by area, the force acting 

on this area is equal to the stress times the area: P=σ⋅a=
σmax a y

c
. The moment of this force with respect to the neutral 

axis is M=P⋅y=
σmax a y 2

c
. If we sum up the moment for all values of a and y, M=

σmax

c ∑1
n

ai y i
2 . Recall from Chapter 5,

the moment of inertia of a cross-sectional area relative to the x-x centroidal axis is I x=∑
1

n

ai yi
2 , therefore M=

σmax I x

c
.

Rewrite this equation to solve for bending stress at the surface: σ=
Mc
I x

. This equation is called the Flexure Formula.

* The centroidal axis and the neutral axis are the same if the beam is made of a single material that obeys Hooke's law. The centroidal 
and neutral axes are often different in beams made of composite materials, like steel-reinforced concrete, or glass/epoxy composite.
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We can use the moment equation if we want to know how much bending moment the beam can support. The allowable 

moment M allowable=
σallowable I x

c
.

Example #1 – Simply-supported beam with a uniform 
distributed load

A 4×6 timber beam, 8 feet long, is loaded with a uniform distributed load of 
54.65 lb./ft. The beam itself has a weight per unit length of 5.35 lb./ft. What 
is the maximum bending stress, and where does it occur? Report the answer 
in psi.

Solution The total uniform distributed load is the applied load plus the weight

of the beam, wtotal=wapplied+wweight=
54.65lb.

ft.
+5.35 lb.

ft.
=60 lb.

ft.

The load is symmetrical, so the reaction forces are equal to half of the applied

load. RA=RB=
W
2
=wL

2
= 60lb.

ft.
8 ft.
2
=240 lb.

The maximum moment equals the area of the left-hand triangle in the shear 

diagram: half the base times the height. ∣M max∣=
240 lb.⋅4ft.

2
=480ft.⋅lb.

From Appendix E, I x=48.5 in.4  Since the depth of a 4×6 timber is 5.5", c=h
2
=5.5 in.

2
=2.75in.  The maximum bending 

stress occurs at the midspan: σ=
Mc
I x

=
480 ft.⋅lb.(2.75in.)

48.5 in.4 ∣12 in.
ft.

=327 psi . Bending stress diminishes to zero at the ends.

Sawmills produce rough-cut lumber to nominal sizes such as 4 in. by 6 in. Rough-sawn lumber was once widely used in 
construction, but now nearly all lumber is planed on all four sides to a finished size, so a nominal 4×6 has actual dimensions
of 3½×5½ in., as listed in Appendix E.

What happens if you use the nominal dimensions instead of actual dimensions for the timber? I x=
4in.(6 in.)3

12
=72in.4 ,

c= 6in.
2
=3in. , and σ=

480 ft.⋅lb.(3in.)
72 in.4 ∣12 in.

ft.
=240 psi , which is 26% lower than the actual stress.

Tables in the Appendix list values for Ix and Iy for many shapes, but no values for c. Instead, the tables give the section 

modulus, defined as S x=
I x

c
 and S y=

I y

c
. Section modulus makes the stress calculation easier, because it combines two

terms into one. Bending stress σ=
Mc
I x

=M
S x

, and allowable 

moment M allowable=
σallowable I x

c
=σallowable S x . In Example #1, 

the section modulus of a 4×6 timber is 17.6 in.3. Bending 

stress is σ=
M
S x

=
480 ft.⋅lb.
17.6 in.3 ∣12in.

ft.
=327 psi .

Simple shapes like rectangles and circles are symmetrical 
about the neutral axis, so the distance c from the neutral axis 
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to the top surface is the same as the distance c from the neutral axis to the bottom surface. Compound shapes like a T are not
symmetrical about the x-x neutral axis, so there are two values to consider: ctop and cbottom. From the flexure formula,

σ=Mc
I x

, the largest stress occurs on the surface with the largest value of c. In the case of a T-shaped beam loaded on the 

top flange as shown, the largest stress is the tensile stress along the bottom surface of the beam: σ=
M cbottom

I x

.

Example #2 – Allowable bending moment of a timber beam

What is the allowable moment of a 2×4 Douglas fir beam? Report the answer in ft.∙lb.

Solution The allowable moment is the largest bending moment that a beam can support. From Appendix E, the section 
modulus of a 2×4 timber is 3.06 in.3, and the allowable bending stress is 900 psi.

The allowable moment is M allowable=σallowable S x=
900lb.

in.2
3.06in.3∣ ft.

12in.
=230 ft.⋅lb.

Loading Direction

The direction of loading affects both the bending stress and the amount 
of deflection of a beam. A wood board used as a joist bends less and 
develops less bending stress than it would as a plank, so we describe the
two loading directions as strong and weak. We use Ix and Sx for beams 
loaded in the strong direction, and Iy and Sy for beams loaded in the 
weak direction.

Bending Stress in Wide-Flange Steel Beams

Stress-strain diagrams for many
materials are simplified as a 
cartoon showing a straight line 
segment for elastic behavior 
followed by an arc for plastic 
behavior. In the elastic zone, 
stress is proportional to strain; 
the ratio is Young's modulus

E= σ
ε

. 

Almost all equations in this book apply only to the elastic zone. In the plastic zone, the stress required to stretch the material
increases due to strain hardening (also called work hardening) until the stress reaches a peak at the tensile strength of the 
material. After the peak, the material begins to thin, and the cross-sectional area shrinks, so there is less material to support 
the load, and eventually the material breaks.
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Low-carbon steel used for
wide-flange beams has an
elastic zone followed by a
horizontal plastic zone in which
the stress does not change, so
there is no strain hardening.
The stress-strain curve for low-
carbon sheet steel in Chapter 2
shows this effect clearly. As the
strain builds up, eventually
strain hardening begins, and the
stress-strain curve arcs upwards. In steel beam design, we
can use the horizontal part of the stress-strain curve to
extend the load-carrying capacity of the beam. Let's look at
the strain and stress profiles in a steel beam as the load is
increased:

Point #1 Strain and stress are in the elastic zone. They are
both zero at the neutral axis, and we have maximum
compressive and tensile values at the top and bottom
surfaces.

Point #2 Strain and stress have reached the yield point, so
ε2=εY  and σ2=σYS , the yield strength of the material.

Point #3 Strain continues to increase, but the stress does not
exceed the yield strength. Material below the surface reaches the yield point, down to a certain depth. Below this depth, the 
interior bending stress remains in the elastic zone.

Point #4 Strain continues to increase. More of the material below the surface reaches the yield point, but the core is in the 
elastic zone.

Point #5 Strain reaches the point of strain hardening, ε5=εP . All of the material has reached the yield point, becoming fully
plastic. Any additional load on the beam will cause the beam to fail by bending at this location, like two hinged bars.

We can draw an equivalent load diagram for the
fully-plastic beam at Point #5. The compressive
force acting above the neutral axis equals the yield
strength times the cross-sectional area of the beam
in compression (the area above the neutral axis):
PC=σYS⋅AC . Likewise, the tensile force below

the neutral axis is PT=σYS⋅AT . The beam
develops an internal moment to counteract these
forces, equal to each force times the distance from
the neutral axis of the beam to the centroidal axis of each area. Since this moment is
counteracting fully-plastic loading, we call it the plastic moment, MP., given as
M P=PC yC+PT yT=σYS AC yC+σYS AT yT .

If we define a new variable Z=AC yC+AT yT , then M P=σYS Z . This new variable is the
sum of the first moments of the areas above and below the neutral axis; we call it the plastic
section modulus. Like section modulus, S, the plastic section modulus is calculated with
reference to either the x-x or the y-y neutral axis. The example in the diagram is Zx. Beams
loaded in the strong direction will use Zx; beams that are either loaded from the side or tipped on the side will use Zy.
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We can easily calculate Z for simple shapes; you can find Zx and Zy 
for complex shapes like wide-flanged beams in the Appendix.

Rectangle Each area is half the area of the rectangle. Each moment 
arm is half the height of each area, or a quarter of the height of the 
entire rectangle.

AC=AT=bh/2

yC= yT=h /4

Z x=AC yC+AT yT=
bh
2

h
4
+b h

2
h
4
= bh2

4
and Z y=

h b2

4

Circle Each area is half the area of a circle. Find the moment arm in the Appendix.

AC=AT=
πd 2

4
×1

2
=πd 2

8
,  yC= yT=

2 d
3π

,  and  Z x=Z y=AC yC+AT yT=
π d 2

8
2d
3π
+πd 2

8
2d
3π
=d 3

6

While ideal beams follow the ideal stress-strain curves in the preceding section, real beams vary in strength due to defects in
manufacturing and handling. AISC recommends using a factor of safety of 1.67 in steel beam design, so

σallowable=
σYS

1.67
=0.6σYS . If we let the moment in a beam equal the plastic moment, then M allowable=σallowable Z=0.6σYS Z .

Example #3 – Allowable bending moment of a W-beam

What is the allowable moment of a W200×59 wide-flange beam made of A992 steel? Report the answer in kN∙m.

Solution From Appendix D, the plastic section modulus is 652×103 mm3. From Appendix B,  the yield strength is 345 
MPa.

The allowable moment is M allowable=0.6σYS Z x=
0.6 345 MPa 652×103 mm3∣ m3

(103 mm)3∣ 103kN

MPa m2 =135 kN⋅m

The bending stress in a low-carbon steel beam is σ=
M
Z x

.

Shear Stress in Beams

Bending stress is a normal stress, acting perpendicularly to the cross-sectional area of the beam. Apply a downward load on 
top of a simply-supported beam, and the bending stress on the top surface is horizontal and compressive; along the bottom 
surface it is horizontal and tensile.

Beams also have a horizontal shear stress which acts parallel to the neutral axis of
the beam. Take a deck of playing cards and flex it in your hand; the cards slide 
past each other. Think of this sliding as strain; if the cards had been glued 
together, then a corresponding shear stress would have developed in the adhesive.

Glue all but one of the cards on their faces, then place the free card on top of the 
glued deck. Bend the deck, and the top card slides very little with respect to the 
rest of the deck. Now take a second deck having the same number of cards as the 
first deck, and glue all of the cards in the second deck together. Place one deck on
the other and bend them; the two decks slide with respect to each other. This 
experiment shows that the shear stress is zero at the surface of a beam, and 
maximum at the neutral axis.

Bend a simply-supported beam with a point load at the midspan, and the moment diagram is an isosceles triangle. Select 
two points on the beam that are separated by a small distance Δx. On the moment diagram, M 1<M 2 . Since bending stress 
is proportional to bending moment, σ1<σ2 . Pick a horizontal plane within the beam where you want to calculate the shear 
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stress. In this example, the shear plane is above the neutral axis. The cross-sectional area between the shear plane and the 
top of the beam is A'.

Draw a free-body diagram of the beam above the shear plane. The 
horizontal force acting on this area at point 1 is P 1=σ1 A' . Likewise,
the horizontal force acting on this area at point 2 is P 2=σ2 A' . Since
σ1<σ2 , P 1<P2 . The sum of the forces in the x direction equals 
zero, so the difference between these forces is a horizontal shear 
force, V H=P 2−P1 .

The normal stress acting on area A' at point 1 varies with depth: it is 
highest on the top surface of the beam, and lower at the shear plane. 
We can break up area A' into many tiny areas, where each tiny area a 
is a distance y from the neutral axis. The average normal stress acting 
on area A' at point 1 is the sum of the normal stresses acting on all of 

the tiny areas, so σ1avg=∑
y

c M 1 y
I

. The normal force acting on area 

A' at point 1 is the average stress times the sum of these tiny areas, so

P1=∑
y

c M 1 y a
I

=
M 1

I ∑y

c

y a . Since ∑
y

c

y a=y A' , P1=
M 1 y A'

I
. 

Similarly, the normal force acting on area A' at point 2 is

P2=
M 2 y A '

I
. The shear force  V H=P2−P1=

(M 2−M 1) y A '
I

.

The value of the bending moment at any point along a beam equals 
the area of the shear diagram up to that point, so M 1=V x  and
M 2=V (x+Δ x) . The difference of the two moments is

M 2−M 1=V (x+Δ x)−V x=V⋅Δ x . Substitute this result into the shear force equation, and we have V H=
V Δ x y A'

I
.

The shear stress acting in the shear plane equals the shear force VH divided by 
the area it acts on: the net thickness of the beam in the shear plane times the 

length of beam between points 1 and 2: τ=
V H

tΔ x
=V Δ x y A '

I t netΔ x
=V y A '

I t net

. The 

product y A'  is the first moment of area A' about the neutral axis, defined as 
the variable Q= y A' . Substituting, we have the General Shear Formula for 

beams: τ=
V Q
I t net

.
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Terms in the General Shear Formula

τ Shear stress acting in a shear plane

V Shear load acting on the beam, determined from the shear diagram

Q Product of two terms: Q=A'⋅ȳ

A' Area of the beam above the shear plane, shaded blue in the diagram above

ȳ Distance from the neutral axis of the beam to the centroid of area A' 

I Moment of inertia of the entire shape

tnet
Net thickness of the beam at the shear plane. For solid cross sections, this is the thickness of the beam; for 
hollow cross sections, this is the thickness of solid material at the shear plane.

The net thickness is the total thickness minus any hollow space.

Example #4 – Shear stress in a rectangular cross-section beam

Calculate the shear stress in a rectangular beam at five locations: at the neutral axis, ¼ of the way between the neutral axis 
and the top of the beam, ½ way, ¾ of the way, and at the top of the beam.

Case 1 When the shear plane is at the neutral axis, y= h
4

 and A'=bh
2

, so Q= y A'= h
4

bh
2
=bh2

8
. The moment of 

inertia of a rectangle is I=bh3

12
 and the thickness of the beam at the shear plane is t=b . The shear stress is

τ= VQ
I t net

=V bh2

8
12

bh3 b
= 3V

2bh

Case 2 y= 5
16

h  and A'=3
8

bh , so Q= y A'=5h
16

3bh
8
= 15bh2

128
. The other two variables in the General Shear Equation, 

I and t, are the same as before, so the shear stress is τ= VQ
I t net

=V 15bh2

128
12
bh3 b

= 45V
32bh

100
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net

½ t
net
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net
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net
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Example #4, continued

Case 3 y=3
8

h  and A'=1
4

bh , so Q= y A'=
3 h
8

bh
4
=

3bh2

32
 and τ= VQ

I t net

=V 3bh2

32
12

bh3 b
= 9 V

8 bh

Case 4 y= 7
16

h  and A'=1
8

bh , so Q= y A'=
7 h
16

bh
8
=

7bh2

128
 and τ= VQ

I t net

=V 7bh2

128
12
bh3 b

= 21V
32 bh

Case 5 y=1
2

h  and A'=0 , so Q= y A'=0  and τ=
VQ
I t net

=0

We can plot the results from this Example problem as a function of depth (red dots 
at the right). The shear stress profile for a rectangular beam looks like a parabola. 
The shear stress is a maximum at the neutral axis, diminishing to zero at the top and 
bottom surfaces. The profile looks different for wide-flange beams because the area 
is distributed differently, but the maximum shear stress will still be at the core and 
the surface will have zero shear stress.

Example #5 – Shear stress in a solid round circular beam

A round 1.5 cm diameter rod is loaded in bending with a point load of 300 N 
at the midspan. Calculate the shear stress at the neutral axis. Report the result 
in MPa.

Solution The loading is symmetrical, so the reaction forces equal half the 

applied load: RA=RB=
300 N

2
=150 N . Draw the shear diagram to find the 

maximum shear load, V max=RA=150 N .

From Appendix C, the centroid of area A' is at y=2 d
3π

.

Area A' is half the area of the circle: A'=1
2
πd 2

4
=πd 2

8
.

Calculate Q= y A'=
2d
3π

πd 2

8
=

d 3

12
. The moment of inertia of a circle is

I=π d 4

64
, and the thickness of the beam at the shear plane is d. Combine terms to find shear stress:

τ= VQ
I t net

=V d 3

12
64

π d 4 d
= 16V

3π d 2=
16⋅150 N

3π(1.5 cm)2∣MPa m2

106 N ∣(100 cm)2

m2 =1.13 MPa

Another way to solve this problem is to calculate numerical answers for y , A', Q, and I, with appropriate unit conversions, 
then calculate τ. Try it both ways, and you will find that the algebraic solution is shorter and requires fewer keystrokes on 
the calculator, which means fewer opportunities for error.
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What if the beam in Example #5 was a hollow pipe instead of a solid round rod? From 

Appendix C, area A' is a half pipe, so c=
d o

2
, A'= π

8
(do

2−d i
2) , and y=

2(d o
3−d i

3)
3π(d o

2−d i
2)

. 

Solve for Q=A' ȳ=
π(d o

2−d i
2)

8
2(d o

3−d i
3)

3π(d o
2−d i

2)
=
(d o

3−d i
3)

12
. If it is a standard-sized pipe, 

the moment of inertia is probably in a table. Otherwise, I x=
π

64
(d o

4−d i
4) .

The net thickness of material in the shear plane is two wall thicknesses, so t net=d o−d i . With a little more algebra, you can 
find the maximum shear stress for a hollow pipe.

Shear Stress in W-Beams

The General Shear Formula works well for simple shapes where y  and A' are easy to calculate. Steel 
wide-flange beams have a more complicated shape, so we can approximate the shear stress at the neutral 

axis using the Average Web Shear Approach: τ=
V

d t w
 where d is the depth of the beam and tw is the 

thickness of the web.

Example #6 – Shear stress in a W-beam

A W4×13 steel wide-flange beam is loaded in bending with a point load of 6 
kips at the midspan. Calculate the shear stress at the neutral axis. Report the 
result in ksi.

Solution The loading is symmetrical, so the reaction forces equal half the 

applied load: R A=RB=
6 kips

2
=3 kips . From the shear diagram, the 

maximum shear load V max=R A=3 kips . Use the Average Web Shear 
Approach to find the shear stress at the neutral axis:

τ= V
d tw

= 3 kips
4.16in.×0.280 in.

=2.58 ksi .

How does the calculated shear stress compare with the actual shear strength of the material? While yield and ultimate 
strengths are easy to find in reference books and on the internet, shear strengths are rarely reported. A good estimate for 
steels is τallowable=0.4σYS . If the beam in the previous Example is made of A36 steel with a yield strength of 36 ksi, the 
allowable shear stress is τ allowable=0.4(36ksi)=14.4 ksi>τ applied , therefore the beam will not fail in shear.

In most of the problems so far, we have assumed that the beams are weightless. Real beams have real weight, so we need to 
include the weight as a uniform distributed load along the length of the beam.
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Example #7 – Shear and bending 
stress in a W-beam

A 36 foot long W12×30 steel wide-flange 
beam is loaded in bending with a point 
load of 5 kips located 24 feet from the left 
end. The beam also has weight. Calculate 
the allowable bending moment in the 
beam. Calculate the maximum bending 
stress and maximum shear stress, and 
report the result in ksi. Report the locations
of these maximum points.

Solution The loading is not symmetrical, 
so use an equivalent load diagram, sum of 
the moments and sum of the forces to find 
the reaction forces. A W12×30 beam has a 
weight per unit length w=30 lb. / ft. , so 
the equivalent point load

W=30 lb.
ft.

36 ft.∣ kip

103 lb.
=1.08 kips  at the midspan.

The moment about point A is ∑ M A=0=−1.08 kips⋅18 ft.−5kips⋅24 ft.+RB⋅36 ft.

Rewrite the equation to find the reaction force R B=
1.08 kips⋅18 ft.+5 kips⋅24 ft.

36ft.
=3.873 kips

Sum of the forces ∑ F y=0=RA−1.08 kips−5 kips+3.873 kips . Solve for the reaction force
R A=1.08 kips+5kips−3.873 kips=2.207 kips . Calculate the inflection points on the shear diagram.

V 1=R A=2.207 kips , V 2=V 1−
0.030 kips

ft.
24 ft.=1.487 kips , V 3=V 2−5kips=−3.5133 kips ,

V 4=V 3−
0.030 kips

ft.
12 ft.=−3.873 kips , V 5=V 4+RB=0 kips

The maximum moment is the area of the left-hand trapezoid in the shear diagram:

M max=
2.207 kips+1.487 kips

2
24 ft.=44.3 kip⋅ft.

The allowable bending moment M allowable=0.6σYS Z=0.6⋅50 kips⋅43.1 in.3

in.2 ∣ ft.
12 in.

=107.8 kip⋅ft.

Since M allowable>M applied , the beam is strong enough to support the existing loads in bending.

The maximum bending stress in the beam is σ=
M
Z
=44.3 kip⋅ft.

43.1 in.3 ∣12 in.
ft.

=12.34 ksi , and it occurs at the point load.

From the shear diagram, the maximum shear load ∣V max ∣=3.873 kips . Use the Average Web Shear Approach to find the 

maximum shear stress τ=
V

d tw

= 3.873 kips
12.34 in.×0.260 in.

=1.21ksi , which occurs at point B.

103
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As a reminder, be sure to use the absolute values of V and M to find the 
maximum value for normal and shear stress calculations. With the beam at the 
right, ∣V max∣=5 kN  and ∣M max∣=10 kN∙m .

Allowable Load

Design engineers select beams that will support known loads. However, in 
many cases the structure already exists, and will be used with a different 
loading condition than it was originally intended. A manufacturing plant may 
bring in a larger piece of equipment, so the engineer calculates whether the 
existing floor will support the machine.

A simply-supported timber beam carries a uniform distributed load; how large 
a load can the beam support? Since the loading is symmetrical, the reaction 

forces equal half the applied load: RA=RB=
w L
2

. The maximum shear load is

V 1=RA=
w L

2
. The maximum moment equals the area of the left-hand triangle

in the shear diagram, or one half the base times the height:

M max=
1
2

L
2

w L
2
=

w L2

8
. If we look at bending stress, then σ=

M
S
=

w L2

8 S
.

Rewrite the equation to solve for the load, w=
8σallowable S

L2 . If we look at shear stress, τ=
V Q
I t net

= w LQ
2 I t net

. Rewrite the 

equation to solve for the load, w=
2 τallowable I t net

LQ
.
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Example #8 – Load-carrying capacity of a timber beam

A simply-supported, 8 foot long, 4×8 southern yellow pine timber supports a 
uniform distributed load. Calculate the maximum load the beam can support. 
Report the result in lb./ft.

Solution From the previous discussion, based on bending stress the beam can

support a total load of wtotal=
8σallowable S

L2 . From the Appendix, the 

allowable bending stress of southern yellow pine is 1400 psi and the section 
modulus S x=30.7in.3 .

The total load is wtotal=
8

(8ft.)2

1400lb.
in.2

30.7in.3∣ ft.
12 in.

=448lb./ ft. . The 

total load includes the beam's weight per unit length: wtotal=wapplied+wbeam . 
From the Appendix, a 4×8 timber has a weight of 7.05 lb./ft., so
wapplied=wtotal−wbeam=448lb. /ft.−7.05lb./ ft.=441 lb./ ft.

Also from the previous discussion, based on shear stress the beam can 

support a total load of wtotal=
2 τallowable I t net

LQ
. From the Appendix,

I x=111in.4  and τallowable=175 psi .

Based on the dimensions, y=7.25 in.
4

=1.8125 in. , t net=3.5 in. , and A'=3.5 in.⋅7.25 in.
2

=12.6875 in.2 , so

Q=A' y=12.6875 in.2⋅1.8125in.=22.9961 in.3 .

The total load is wtotal=
2 τallowable I t net

LQ
= 2

8ft.
175 lb.

in.2

111in.4

22.9961 in.3
3.5 in.=739 lb./ ft. .

The applied load is wapplied=739 lb./ ft.−7.05lb./ ft.=732 lb./ ft.  The beam can support an applied load of 441 lb./ft. before
it fails in bending, and a load of 732 lb./ft. before it fails in shear. Pick the lower of the two numbers because this is where 
failure will occur first.

Key Equations

Use the Flexure Formula to find the bending stress in any beam other than a steel W-beam: σ=
Mc
I x

 or σ=
M
S x

The allowable moment of a beam is M allowable=
σallowable I x

c
 or M allowable=σallowable S x

For wide-flange steel beams only, the allowable moment is M allowable=0.6σYS Z x  and the bending stress is σ=
M
Z x

Use the General Shear Formula to find the maximum shear stress in a beam: τ=
V Q
I t net

 where Q= y A'

Use the Average Web Shear Approach to find the maximum shear stress in a wide-flange steel beam: τ=
V

d t w

For steels, use τallowable=0.4σYS
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Chapter 10: Beam Defection
Radius of Curvature

A weightless beam with no loads has
a horizontal elastic curve. Pick two
points C and D that are a small
distance x apart. If we add a load, the
beam deflects, and the elastic curve
bows downward. Points C and D now
lie on an arc with a radius of
curvature, labeled R on the diagram.
At the bottom of the beam, points C
and D are now x+δ  apart, because
the bottom of the beam has stretched
a little. Draw a vertical line through
point D, and we have a little triangle
with height c and base δ. We can use
the principle of similar triangles to
compare the little triangle with the
big triangle having a height R and

base x: δ
c
= x

R
. Rewrite the equation

to solve for δ
x
= c

R
. Along the

bottom surface of the beam, the strain is ε=δx , so ε= c
R

. As long as the beam is elastic, E= σ
ε

, which we can rewrite as 

ε= σ
E

. Set the strain equations equal to each other, and 
σ
E
= c

R
. Solving for stress, σ= E c

R
. We know another equation 

for bending stress in a beam: σ=M c
I

. Set the stress equations equal to each other, and 
E c
R
=M c

I
→ E

R
=M

I
. Now 

solve for radius of curvature, R= E I
M

. Note: this equation only applies when bending moment is constant.

This equation helps us calculate the radius of curvature at a given point along the length of a beam. There are a few special 
cases where the moment M is constant over a long length, so the elastic curve is a circular arc along this length.

Example #1 – Radius of curvature with constant moment

A 2 m long titanium beam is made of 1 cm square barstock. Two 50 N point 
loads lie 0.25 meters from each end. What is the radius of curvature of the 
beam between the two point loads? Report the answer in meters.

Solution Draw the elastic curve, shear diagram, and moment diagram. The 
loading is symmetrical, so the reaction forces RA=RB=50 N . The value of 
the moment diagram between the point loads equals the area of the left-hand 
rectangle in the shear diagram: M=0.25 m⋅50 N=12.5 N⋅m .

The moment of inertia of a square I=
b h3

12
=

b4

12
.

The radius of curvature of the beam between the two point loads is

R= E I
M
= E b4

12 M
=

114GPa (1 cm)4

12⋅12.5 N⋅m ∣ 109 N

GPa m2∣ m4

(100cm )4
=7.6 m

106

A B

R
A

R
B

C

P

A BD

Elastic
curve

C D

R

c

δ

x+δ

A B

R
A

R
B

CA BD

Elastic
curve

C D

c

x

Beam with no load Loaded beam

R

x
c

δ
x

Elastic
curve

A B

50 N 50 N

V

M
max

= 12.5 N∙m

0.25 m

50 N

0.25 m

1.5 m

M

V
1
= 50 N

50 N

V
2
= 0

V
3
= –50 N

V
4
= 0



Chapter 10: Beam Deflection

The blade on a bandsaw obeys the radius of curvature equation because the blade flexes elastically, and forms a 
semicircular arc at each bandsaw wheel.

In a few rare cases, we can calculate the maximum deflection of a beam using the radius of curvature, as in the following 
example.

Example #2 – Defection with constant 
moment

What is the maximum deflection at the midspan of
the beam in Example #1? Report the answer in cm.

Solution This problem is like Example #1 but 
flipped upside down. Draw the elastic curve with 
its radius of curvature and the center of curvature 
(cross at the bottom of the figure). The distance 
from the center of curvature to the beam is R; the 
beam deflects a distance Δmax at the midspan; and 
the distance from the center of curvature to the 
undeflected beam is R−Δmax . The base of the 
shaded triangle is half the distance between the 
supports, 0.75 m. Use the Pythagorean Theorem to

find the height of the triangle, R−Δmax=√R2−(0.75 m)2=√(7.6 m)2−(0.75 m)2=7.563 m

Deflection at the midspan Δmax=R−(R−Δmax)=
7.600 m−7.563 m∣100 cm

m
=3.71 cm

The Formula Method for Simple Cases

We can use the Radius of Curvature Method to calculate deflection as long as the moment is constant. From the examples in
previous chapters, we know that the moment usually changes along the length of a beam. There are a number of geometrical
and calculus-based techniques for calculating deflection in these cases. Engineers have compiled these solutions in 
handbooks, so future engineers can use a worked-out algebraic solution, instead of deriving the solution from scratch. The 
most useful compilation is Roark's Formulas for Stress and Strain, which contains many hundreds of formulas for beams, 
shells, membranes, pressure vessels, and columns.

Look in Appendix F for Formula Method solutions for various beam problems. Each case includes a load diagram, shear 
diagram, moment diagram, reaction forces and moments, and formulas for shear, moment, the slope at the ends, and 
deflection at various positions along the beam. Use Appendices B, C, D, or E to find values for E and I, then solve.

Example #3 – Defection by a point load on a simply-
supported beam

Use the Formula Method to calculate the maximum deflection of a simply-
supported 8-foot 4×4 Southern yellow pine timber loaded with a 200 lb. 
point load at the midspan. Report the result in inches.

Solution From Appendix F, the deflection at the midspan Δmax=
P L3

48 E I
, 

where Young's modulus is 1700 ksi and the moment of inertia is 12.5 in.4. 

Δmax=
200 lb.(8ft.)3

48⋅12.5in.4

in.2

1700 kip∣(12 in.)3

ft.3 ∣ kip
103 lb.

=0.17in.
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Example #4 – Defection by a point load on a cantilever beam

Use the Formula Method to calculate the maximum deflection of a 
cantilever 8-foot 4×4 Southern yellow pine timber loaded with a 200 lb. 
point load at the end. Report the result in inches.

Calculate the slope at the end of the beam; report the result in degrees.

Solution From the Appendix, the deflection at the free end Δmax=
P L3

3 E I
. 

The moment of inertia and Young's modulus are the same as in the 
previous Example.

Δmax=
200lb. (8ft.)3

3⋅12.5in.4

in.2

1700 kip∣(12 in. )3

ft.3 ∣ kip
103 lb.

=2.78 in.

The equation for the slope at the free end is in radians, so include a conversion factor for degrees:

θA=
P L2

2 E I
=200 lb. (8 ft.)2

2⋅12.5in.4

in.2

1700 kip∣(12 in.)2

ft.2 ∣ kip
103 lb.∣180°

π rad
=2.48°

When the point load on a cantilever beam is at the end of the beam, the elastic curve is an arc. If the point load is located 
away from the end, then the elastic curve is an arc from the wall to the point load, and a straight line between the point load 
and the end of the beam. This portion of the beam is sloped but straight, as shown in Example #5.

Example #5 – Defection by a point load on a cantilever beam

A cantilever 8-foot 4×4 Southern yellow pine timber loaded with a 200 lb. 
point load 2 feet from the end. Use the Formula Method to calculate the 
deflection at the point load. Calculate the deflection at the point load and 
the maximum deflection at the end. Report the results in inches.

Solution From Appendix F, the deflection at point C is ΔC=
P b3

3 E I
, where 

b is the distance from the point load to the wall. The moment of inertia and 
Young's modulus are the same as in the previous two Examples.

ΔC=
200 lb.(6ft.)3

3⋅12.5in.4

in.2

1700kip∣(12 in.)3

ft.3
kip

103 lb.
=1.17 in.

The slope of the straight portion of the beam from point C to the left end is

θ= P b2

2 E I
=200 lb.(6ft.)2

2⋅12.5in.4

in.2

1700 kip∣(12 in.)2

ft.2 ∣ kip
103 lb.∣180°

π rad
=1.40° .

The portion of the beam to the left of the point load is a straight line. Use trigonometry to find the maximum deflection:

tan θ= y
2 ft.

 so y=2ft. tan (1.40 °)∣12 in.
ft.

=0.59 in.  and Δmax=y+ΔC=1.17in.+0.59in.=1.76 in.

Alternatively, use Δmax=
P b2

6 E I
(3 L−b)= 200lb.(6ft.)2

6⋅12.5 in.4
in.2

1700kip
(3(8ft.)−6 ft.)∣(12 in.)3

ft.3 ∣ kip
103 lb.

=1.76 in.
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Example #6 – Force required to overcome defection

An upward force PA is applied to the end of the beam in Example #5, 
sufficient to produce zero deflection at the free end of the beam. Calculate 
the value of PA. Report the results in pounds.

Solution From Appendix F, the deflection at point A due to a point load at 

the free end is ΔA=
P A L3

3 E I
. Solve for PA, setting ΔA=Δmax  from Example 

#5.

P A=
ΔA3 E I

L3 =
1.76 in.(3)
(8 ft.)3

1700 kip

in.2

12.5in.4∣ ft.3

(12 in.)3∣103 lb.
kip

=127 lb.

Formula Method Hints

Some Formula Method equations have conditions. 
This simply-supported beam has a single point load 
located at a distance a from the left end. The 
deflection at a distance x from the left end is

Δx=
P b x

6 E I L
(L2−b2−x2)  when x<a , so this 

equation applies only to the left of the point load. 
What if we want the deflection at a location to the 
right of the point load? Redraw the beam as a mirror 
image, swapping dimensions a and b, where x' is the
distance from the left end.

Example #7 – Mirror image problem

A simply-supported 36 cm long steel beam is 
loaded with a 6.5 kN point load 8 cm from the 
left end. The beam is made of 1.2 cm square 
barstock. Use the Formula Method to calculate 
the deflection 24 cm from the left end, in mm.

Solution From Appendix F, the 

deflection at a distance x from the left end is

Δx=
P b x

6 E I L
(L2−b2−x2)  when x<a .

Since x>a , we have to draw a mirror image of the loading case.

The moment of inertia is I=bh3

12
= b4

12
=(1.2cm )4

12
=0.1728 cm4

Δ x=
6.5 kN⋅8cm⋅12cm

6⋅207GPa⋅0.1728 cm4⋅36cm∣GPa m2

106kN ∣(100cm )2

m2 ×
((36cm)2−(8cm )2−(12 cm)2)∣10 mm

cm
=8.79 mm
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The Formula Method for Complex Cases: Superposition

The Formula Method equations in the 
Appendix apply to simple loading cases. Many
loading conditions are more complex, but you 
can separate a complex loading condition into 
its parts, solve for V, M, or Δ at any location 
along the beam, then add the results together 
to find the total V, M, or Δ at that location:

Δ total=Δ1+Δ2+Δ3+...Δn  for n cases.

Example #8 - Superposition

A simply-supported 200 cm long, 51 mm 
standard steel pipe is loaded with a uniform 
distributed load of 400 N/m and a point load 
of 8 kN located 25 cm from the right end. 
Use the Formula Method and Superposition 
to calculate the deflection at the midspan (at
x=1m ). Report the results in mm.

Solution From Appendix F, the deflection 
due to the point load at a distance x from

the left end is Δ1=
P b x

6 E I L
(L2−b2−x2) . At the midspan, x= L

2
, so Δ1=

P b L
6 E I L 2 (L2−b2−( L

2 )
2

)= P b
12 E I (34 L2−b2) . 

In this equation, b is 25 cm. Also from the Appendix, a 51 mm standard steel pipe has a moment of inertia
I=0.285×106 mm 4

Δ1=
8kN⋅25 cm

12⋅207GPa⋅0.285×106 mm4∣GPa m2

106 kN ∣(103 mm)2

m 2 ∣10 mm
cm

×
(0.75(200cm )2−(25 cm )2)∣(10 mm )2

cm 2
=8.30 mm

The deflection due to the distributed load at the midspan is Δ2=
5w L4

384 E I

Δ2=
5

384
400 N

m
(200cm )4

207 GPa⋅0.285×106mm 4∣GPa m2

109 N ∣103 mm
m ∣(10 mm )4

cm4
=1.41 mm

Δtotal=Δ1+Δ2=8.30 mm+1.41 mm=9.71 mm

In the previous Example, the maximum deflection due to the uniform distributed load is at the midspan (x = 1 m), but the 

maximum deflection due to the point load is located at x=√ a (a+2b)
3

=√ 175 cm(175 cm+2 (25 cm))
3

=114.5 cm , to the 

right of the midspan. Using the Method of Superposition, you can add the shear, moment, or deflection at a given point 
along the beam, but you cannot add the maximum shear, moment, or deflection, unless they occur at the same point along 
the beam. One example is a simply-supported beam with a point load at the midspan and a uniform distributed load; both 
loading conditions have the maximum deflection and maximum moment at the midspan.

Example #8 does not consider the weight of the pipe. From Appendix D, the mass per unit length is 5.44 kg/m. The SI unit 
of weight is the newton, equal to a kilogram meter per second squared. Multiply mass by gravity to get weight. Weight per 

unit length, w=W
L
=m g

L
=5.44kg

m
9.81m

s2 ∣N  s2

kg m
=53.4 N/m
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Visualizing the Defection Curve

We can use the Formula Method for calculating the deflection of a beam at many points along its length, then graphing the 
result to see the deflection curve.

Example #9 – Defection along the length of a timber beam

A 150×360 Douglas fir timber is loaded as shown. Use the Formula Method to 
calculate the deflection at 1 meter increments from left to right. Graph the 
deflection vs. position along the beam. Ignore the weight of the beam.

Solution From Appendix E, E=11.7 GPa  and I=471×106 mm 4 .

Since point A is pinned, Δ0ft.=0 .

From Appendix F, the deflection equation for this loading condition is . Δx=
P b x

6 E I L
[ L2−b2− x2]  for x<a  where

a=2m  and b=8 m . We can use this equation for x=1m .

At x=1m , Δ1 m=
3 kN (8 m)(1 m) [(10 m)2−(8 m)2−(1 m)2 ]

6 11.7GPa 471×106 mm 4 10 m ∣GPa  m2

106 kN ∣(103 mm )5

m5 =2.54mm

At x=2 m  (the point load), it is easier to use Δ2 m=
P a2 b2

3 E I L

Δ2 m=
3 kN(2 m)2(8 m)2

3 11.7GPa 471×106 mm 4 10 m∣GPa  m2

106 kN ∣(103 mm )5

m5 =4.65mm

To the right of the point load, x>a , so we need to flip the diagram. Let's call the new
dimensions a' and b': a'=8 m  and b'=2 m . We also need new values of x, starting 
at point B and moving right in the mirror image...let's call it x'.

The value of x' is calculated as x'=L− x , so Δx=
P b' x '
6 E I L

[L2−b' 2−x ' 2 ]

At x=3m, x '=7 m , Δ3 m=
3 kN(2 m)(7 m) [(10 m)2−(2 m)2−(7 m)2]

6 11.7GPa 471×106 mm4 10 m ∣GPa  m 2

106 kN ∣(103 mm )5

m5 =5.97 mm

At x=4 m, x '=6 m , Δ4 m=
3 kN(2 m)(6m) [(10m)2−(2 m)2−(6 m)2 ]

6 11.7GPa 471×106mm 4 10m ∣GPa  m2

106 kN ∣(103 mm )5

m5 =6.53mm

At x=5m, x '=5m , Δ5 m=
3 kN(2 m)(5 m) [(10m)2−(2 m)2−(5 m)2 ]

6 11.7 GPa 471×106 mm4 10m ∣GPa  m2

106kN ∣(103mm )5

m5 =6.44mm

At x=6 m, x '=4 m , Δ6 m=
3 kN(2 m)(4 m) [(10m)2−(2 m)2−(4 m)2]

6 11.7 GPa 471×106mm 4 10 m ∣GPa  m 2

106 kN ∣(103 mm )5

m5 =5.81 mm

At x=7 m, x '=3 m , Δ7 m=
3 kN(2 m)(3 m) [(10 m)2−(2 m)2−(3m)2 ]

6 11.7GPa 471×106 mm4 10 m ∣GPa  m 2

106 kN ∣(103 mm)5

m5 =4.74 mm
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Example #9, continued

At x=8m, x '=2 m , Δ8 m=
3 kN(2 m)(2 m) [(10 m)2−(2 m)2−(2 m)2 ]

6 11.7GPa 471×106 mm 4 10 m ∣GPa  m2

106kN ∣(103mm )5

m5 =3.34 mm

At x=9m, x'=1 m , Δ9 m=
3 kN(2 m)(1 m) [(10m)2−(2 m)2−(1m)2 ]

6 11.7GPa 471×106 mm4 10m ∣GPa  m2

106kN ∣(103mm )5

m5 =1.72mm

Since point B is pinned, Δ10ft.=0

Deflection is plotted as negative numbers to show the beam deflecting downward under the applied load. Although the 
point load is 2 meters from the left end, the maximum deflection is at 4 meters.

Interpolation

The weight per unit length of a steel beam is the specific weight of steel (0.284 lb./in.3) times the cross-sectional area of the 
beam. For metric sizes, the mass per unit length of a steel beam is the density of steel (7.85 g/cm3) times the cross-sectional 
area of the beam. These values are listed in Appendix D.

In Example #9 we ignored the weight of the beam. How would the results change if we included it? With timber beams, the 
weight per unit length for a given timber size depends on the type of wood, because different wood species have different 
specific weights and densities. The density of Eastern white pine is 350 kg/m3. Look at Appendix E, Table E4, and there are 
three columns for mass per unit length, corresponding to densities of 320, 480, and 640 kg/m3...but not 350 kg/m3, so we 
have to interpolate between numbers in the table.

Here are some rows of Table E4:

Designation Width Depth Area Moment of
inertia

Section
modulus

Mass per unit
length

ρ = 320 kg/m3

Mass per unit
length

ρ = 480 kg/m3

Mass per unit
length

ρ = 640 kg/m3

b d A Ix Sx m/L m/L m/L
(mm) (mm) (103 mm2) (106 mm4) (103 mm3) (kg/m) (kg/m) (kg/m)

150×250 140 241 33.7 163 1360 10.8 16.2 21.6
150×300 140 292 40.9 290 1990 13.1 19.7 26.2
150×360 140 343 48.0 471 2750 15.4 23.1 30.8
150×410 140 394 55.2 714 3620 17.7 26.5 35.4
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From the 150×360 row, the mass per unit length is 15.4 kg/m for wood having a density of ρ=320 kg/m 3  and 23.1 kg/m 

for wood having a density of ρ=480kg/m3 . If you graph these values, you can see that the ratio of 
350 kg

m3−320 kg
m3

480 kg
m3−320kg

m3

 is 

equal to 
(m

L )−15.4 kg
m

23.1 kg
m
−15.4 kg

m

. The math is essentially the same as a similar triangles calculation.

Rewrite the equation to solve for the mass per unit length:

m
L
= [ 350kg

m3 −320 kg
m3

480 kg

m3−320 kg

m3 ] (23.1 kg
m
−15.4 kg

m ) + 15.4 kg
m

= 16.8 kg
m

We need the weight per unit length, not the mass per unit length, so multiply
by gravity:

w=m g
L
=16.8kg

m
9.81m

s2∣N s2

kg m
=165 N

m

Finding the weight per unit length of US Customary timbers is simpler 
because you do not have to convert mass to weight. Instead of density, you 
use specific weight.

Interpolation is a good skill to develop because it is used in many other technical fields, including physics, chemistry, heat 
transfer, fluid mechanics, and thermodynamics.

From Appendix F, the deflection due to beam weight is Δx=
w x

24 E I
(L3−2 L x2+x3) . For each value of x in Example #9, 

use superposition to find the total deflection due to the point load and the beam weight.

Key Equations

If a beam segment has a constant moment, then the radius of curvature of that segment of beam is R= E I
M

. The bending 

stress in this segment of the beam is σ= E c
R

. Otherwise, use the Formula Method and the equations in Appendix F.
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Chapter 11: Beam Design
Wide-Flange Steel Beam Design in Six Easy Steps

In the previous three chapters, we learned how to calculate reaction forces and moments, how to draw shear and moment 
diagrams, how to calculate deflection, and how to calculate bending and shear stresses for a given beam size and shape. 
When you design a beam, you start with the applied loads, beam length, allowable stresses (and sometimes allowable 
deflection), and you must figure out what size beam to use. Use these six steps, and you can design a wide-flange steel 
beam.

Step 1 Identify all applied loads and design constraints (beam length, yield strength, and maximum deflection if specified).

Step 2 Draw the load diagram and calculate the reactions. Draw an equivalent load diagram if necessary.

Step 3 Draw shear and moment diagrams, and calculate Vmax and Mmax.

Step 4 Select the lightest beam from Appendix D that will support Mmax, or has enough stiffness to limit Δmax. The allowable 

moment in a steel beam M allowable=0.6σYS Z x , so the required plastic section modulus is Z required=
M

0.6σYS

=1.67 M
σYS

. Solve

for Zrequired, then find the lightest W-beam that has a slightly larger value of Z.

U.S. Customary beams are identified by nominal depth and weight per unit length. For example, W12×40 is about 12 in. 
deep, and weighs 40 lb./ft.

Metric beams are identified by nominal depth and mass per unit length. For example, W360×110 is about 360 mm deep, and
has a mass per unit length of 110 kg/m; convert to weight per unit length by multiplying by gravity (9.81 m/s2), using the 

definition of a newton, N=kg⋅m
s2 , to convert units: w=m

L
g=110 kg

m
9.81 m

s2 ∣N s2

kg m ∣ kN
103 N

=1.08 kN/m

If the maximum deflection is specified, write the equation for Δmax, solve it for Irequired, then find the lightest W-beam that has
a slightly larger value of I.

Step 5 Add the beam weight to the load diagram, and recheck moment and deflection. You may have to draw completely 
new shear and moment diagrams. If Z beam>Z required , the beam is OK in bending, and if I beam> I required , the beam is OK in 
deflection. If either of these conditions is not met, pick a larger beam and recalculate.

Step 6 Check shear. For steel W-beams, V applied≤0.4σYS d t w  where d is the beam depth and tw is the thickness of the web. 
As long as this inequality is true, the beam is OK in shear.

The rule of thumb in these calculations is to use a beam that has 
more than you need (more I, more Z, more shear strength). Just 
like in real life, having more than you need is usually better than 
having less than you need (money, food, education, happiness, 
etc.)
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Example #1 – Uniform distributed load on a W-beam

Select the lightest W-beam made of A992 steel that will support a 
uniform distributed load of 3 kip/ft. on a span of 20 ft.

Step 1 Identify loads and design constraints:

w=3 kip/ft.
L=20ft.
σYS=50 ksi
Δmax  is not constrained

Step 2 The loading is symmetrical:

RA=RB=
w L
2
=3kips

ft.
20 ft.

2
=30 kips

Step 3 V max=30 kips ; M max=
w L2

8
=3kips

ft.
(20 ft.)2

8
=150 kip⋅ft.

Step 4

Z required=
1.67 M
σYS

=1.67⋅150kip⋅ft. in.2

50 kips∣12 in.
ft.

=60.1in.3

Look in Appendix D for the lightest W-beam for which
Z>Z required . W18×35 has a plastic section modulus of 66.5 in.3 and

is 35 lb./ft.; all other beams that meet the Z constraint are heavier.

Step 5 Add the beam weight to the shear and moment diagrams, 
and recalculate the maximum values. Since the shape of these 
diagrams has not changed, we can use the same equations as 
before, adding the beam weight to the applied weight.

RA=RB=V max=
(w applied+wbeam)L

2
= 3.035 kips

ft.
20 ft.

2
=30.35kips

M max=
(w applied+w beam)L

2

8
=

3.035 kips
ft.

(20ft.)2

8
=151.8 kip⋅ft.

Z required=
1.67 M
σYS

=1.67⋅151.8kip⋅ft. in.2

50 kips∣12 in.
ft.

=60.8in.3

We have Z beam=66.5in.3 Since Z beam>Z required , the beam is OK in bending.

Step 6 The beam will support a shear load of 0.4σYS d tw=0.4⋅50 kips
in.2 ⋅17.7in.⋅0.300 in.=106 kips  Since we are 

applying only 30.35 kips in shear, the beam is OK in shear.

Real engineering problems have multiple constraints. In the previous problem, we designed a beam that was strong enough 
to support the applied load and its own weight, without failing in bending or shear. In the next problem, we will add another
constraint: maximum deflection. In many structures, deflection governs design; for example, most people feel 
uncomfortable walking across a strong floor that moves too much.
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Example #2 – Uniform distributed load on a W-beam with
a defection constraint

Select the lightest W-beam made of A992 steel that will support a 
uniform distributed load of 3 kip/ft. on a span of 20 ft., and deflects 
no more than 0.6 in.

Step 1 Identify loads and design constraints:

w=3 kip/ft.
L=20 ft.

     
σYS=50 ksi
Δmax=0.6 in.

Steps 2 & 3 These steps are identical to Example #1:
RA=RB=30 kips , V max=30 kips , and  M max=150 kip⋅ft.

Step 4 Z required=60.1in.3  as in Example #1, therefore we should try  
W18×35 which has a plastic section modulus of 66.5 in.3 

For this loading case, Δmax=
5w L4

384 E I
. The moment of inertia 

required to support the deflection constraint is

I required=
5w L4

384 E Δmax

= 5
384

3kips
ft.

(20ft.)4 in.2

30×103kip 0.6 in.∣(12 in.)3

ft.3 =600in.4 .

The moment of inertia of a W18×35 beam is 510 in.4... not enough. 
The lightest W-beam with I>600 in.4  is W21×50, which has
I x=984 in.4  and Z x=110 in.3

Step 5 Add beam weight to shear and moment diagrams; recalculate 
the max. values. The shape of the diagrams is unchanged; use the 
same equations as before, adding beam weight to applied weight.

R A=RB=V max=
(wapplied+wbeam) L

2
=3.05 kips

ft.
20 ft.

2
=30.5 kips

M max=
(wapplied+wbeam) L2

8
=3.05kips

ft.
(20 ft.)2

8
=152.5 kip⋅ft.

Z required=
1.67 M
σYS

=1.67⋅152.5 kip⋅ft. in.2

50kips∣12 in.
ft.

=61.1 in.3

We have Z beam=110in.3 Since Z beam>Z required , the beam is OK in 
bending.

I required=
5(wapplied+wbeam )L

4

384 EΔmax

= 5
384

3.05 kips
ft.

(20 ft.)4 in.2

30×103 kip 0.6in.∣(12 in.)3

ft.3 =610in.4

We have I beam=984 in.4 . Since I beam> I required , the beam is OK in deflection.

Step 6 The beam will support a shear load of 0.4σYS d t w=0.4⋅50kips

in.2 ⋅20.8 in.⋅0.380 in.=158 kips  Since we are 

applying only 30.5 kips in shear, the beam is OK in shear.
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In these two Examples, the shear and moment diagrams retained their shapes when we added the weight of the beam. In 
most loading cases, we need to draw new shear and moment diagrams, as in Example #3.

Example #3 – Point load on a W-beam

Select the lightest W-beam made of A992 steel that will support a 
point load of 6 kips located 4 feet from the left end of a 12 ft. span.

Step 1 Identify loads and design constraints:

P=6 kips
L=12ft.

     
σYS=50 ksi
Δmax  is not constrained

Step 2 For this loading case, RA=
P b
L
= 6kips⋅8ft.

12 ft.
=4 kips  and

RB=
P a
L
=6 kips⋅4 ft.

12 ft.
=2 kips

Step 3 From the shear and moment diagrams, V max=4kips  and
M max=4kips⋅4ft.=16 kip⋅ft.

Step 4 Z required=
1.67 M
σYS

=1.67⋅16 kip⋅ft. in.2

50 kips∣12 in.
ft.

=6.41 in.3  

From Appendix D, the best choice is W8×10 which has a Z x=8.87in.3  and a weight per unit length of 10 lb./ft.

Step 5 Add beam weight to the load diagram; redraw shear & 
moment diagrams. Use the Method of Superposition to add the 
effects of the point load and the beam weight to find the reactions.

R A=
P b
L
+

wbeam L

2
=6 kips⋅8ft.

12ft.
+0.010 kips

ft.
12 ft.

2
=4.06kips

R B=
P a
L
+

wbeam L

2
=6 kips⋅4 ft.

12 ft.
+0.010 kips

ft.
12 ft.

2
=2.06 kips

V 1=R A=4.06 kips

V 2=V 1−wbeam 4ft.=4.02 kips

V 3=V 2−6kips=−1.98kips

V 4=V 3−wbeam8ft.=−2.06kips

V 5=V 4+RB=0 kips   Since the maximum moment for the point 

load occurs at the point load, and the maximum moment for the beam weight occurs at the midspan, we cannot add the 
Mmax equations for each case. Instead, use the area of the first trapezoid in the shear diagram to find

M max=( 4.06 kips+4.02 kips
2 )⋅4ft.=16.16 kip⋅ft.     Z required=

1.67 M
σYS

=1.67⋅16.16 kip⋅ft. in.2

50kips∣12 in.
ft.

=6.48 in.3  We 

have Z beam=8.87in.3 Since Z beam>Z required , the beam is OK in bending.

Step 6 The beam will support a shear load of 0.4σYS d t w=0.4⋅50kips

in.2 ⋅7.89in.⋅0.17in.=26.8 kips  Since we are 

applying only 4.06 kips in shear, the beam is OK in shear.
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Example #4 – Point loads on an overhanging W-beam

Select the lightest W-beam made of A992 steel that will support the 
point loads shown.

Step 1 Identify loads and design constraints.

σYS=345 MPa
Δmax  is not constrained

Step 2 Use Sum of the Moments and Sum of the Forces to find the 
reaction forces.

R B=
−40 kN⋅1m+180 kN ⋅3m

5 m
=100 kN

R A=40 kN+180 kN−100 kN=120 kN

Step 3 Calculate the values for shear and moment diagrams.

V 1=−40 kN ,  V 2=V 1+R A=80 kN

V 3=V 2−180 kN=−100 kN ,  V 4=V 3+RB=0

M 1=−40kN⋅1 m=−40 kN⋅m ,  M 2=M 1+80 kN⋅3 m=200 kN⋅m=M max ,  M 3=M 2−100 kN⋅2 m=0

Step 4 Z required=
1.67 M
σYS

=1.67⋅200 kN⋅m
345 MPa ∣MPa m 2

103 kN ∣(103 mm)3

m3 =968×103 mm 3  From Appendix D, the best choice is 

W460×52 which has a plastic section modulus of 1090×103 mm3 and a mass per unit length of 52 kg/m. Multiply by 

gravity to get the weight per unit length, w=52 kg
m

9.81 m

s2∣N   s2

kg m ∣ kN

103 N
=0.510 kN

m

Step 5 Add beam weight to the load 
diagram, then draw an Equivalent Load 
Diagram to find the reactions.

The equivalent point load for the beam 
weight per unit length is

W=w⋅L=0.510 kN
m

6 m=3.06 kN

It acts at the center of the beam, 2 m to the right of reaction RA. Use Sum of the Moments and Sum of the Forces to find the
reaction forces.

R B=
−40kN⋅1 m+3.06 kN⋅2 m+180 kN⋅3 m

5 m
=101.2 kN

R A=40 kN+3.06 kN+180 kN−101.2 kN=121.8 kN
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Example #4, continued

Now draw the shear and moment diagrams

V 1=−40 kN

V 2=V 1−0.51 kN
m
⋅1m=−40.5kN

V 3=V 2+R A=81.3 kN

V 4=V 3−0.51 kN
m
⋅3m=79.8kN

V 5=V 4−180 kN=−100.2 kN

V 6=V 5−0.51 kN
m
⋅2 m=−101.2 kN

V 7=V 6+RB=0

M 1=−( 40kN+40.5kN
2 )⋅1 m=−40.3 kN⋅m

M 2=M 1+(81.3 kN+79.8 kN
2 )⋅3 m=201.4 kN⋅m

M 3=M 2−(100.2 kN+101.2 kN
2 )⋅2 m=0

Z required=
1.67 M
σYS

=1.67⋅201.4kN⋅m
345 MPa ∣MPa m2

103 kN ∣(103mm)3

m3 =975×103 mm3

We have Z beam=1090×103 mm3 Since Z beam>Z required , the beam is OK in bending.

Step 6 The beam will support a shear load of

0.4σYS d tw=
0.4 345MPa 450 mm 7.62mm∣ 103 kN

MPa m2 ∣ m2

(103mm )2
=473 kN  Since we are applying only 101.2 kN in 

shear, the beam is OK in shear.
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Timber Beam Design in Six Easy Steps

Rectangular cross-section timber beam design is similar to wide-flange steel beam design, except we use section modulus S 
instead of plastic section modulus Z. Otherwise, the steps are the same:

Step 1 Identify all applied loads and design constraints.

Step 2 Draw the load diagram and calculate the reactions. Draw an equivalent load diagram if necessary.

Step 3 Draw shear and moment diagrams, and calculate Vmax and Mmax.

Step 4 Select the lightest beam from Appendix E that will support Mmax, or has enough stiffness to limit Δmax. The allowable 

moment in a timber beam M allowable=σ S x , so the required section modulus is S required=
M

σallowable bending

. Solve for Srequired, 

then find the lightest timber beam that has a slightly larger value of S.

If the maximum deflection is specified, write the equation for Δmax, solve it for Irequired, then find the lightest timber beam that
has a slightly larger value of I, just like we did for steel beams previously.

Step 5 Add the beam weight to the load diagram, and recheck moment and deflection. You may have to draw completely 
new shear and moment diagrams. If Sbeam>S required , the beam is OK in bending, and if I beam>I required , the beam is OK in 
deflection. If either of these conditions is not met, pick a larger beam and recalculate.

Step 6 Check shear. For rectangular cross-section timbers, τ=3V
2 A

. If V applied<
2 A τallowable

3
, the beam is OK in shear.

Example #5 – Point load on a cantilever timber beam with a 
defection constraint

Select the lightest Southern yellow pine beam for this load that deflects no 
more than 0.5 in. at the free end.

Step 1 Identify loads and design constraints.

P = 800 lb.
L = 14ft.
a = 12ft.
Δmax ≤ 0.5 in.
σ allowable bending = 1400 psi (from Appendix E)
τ allowable = 175 psi (from Appendix E)
E = 1700 ksi (from Appendix E)
γ = 34 lb./ ft.3  (from Appendix E)

Step 2 Solve for reactions: R A=P=800 lb.  and M max=−P a=−800 lb. × 12ft.=−9600ft.⋅lb.

Step 3 Draw shear and moment diagrams, and identify maximum values: ∣V max∣=800 lb. , ∣M max∣=9600 ft.⋅lb.

Step 4 S required=
M

σall. bending

=9,600 ft.⋅lb. in.2

1400 lb.∣12in.
ft.

=82.3 in.3

From Appendix F, Δmax=
P a2(3 L−a)

6 E I

Rewrite to solve for I required=
P a2(3 L−a)

6 EΔmax

=
800lb.(12ft.)2 in.2

6 1700 kip 0.5 in.
[3(14ft.)−12 ft.]∣ kip

103 lb.∣(12 in.)3

ft.3 =1171in.4
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Example #5 (continued)

Look in Appendix E for the lightest Southern yellow pine beam for which S>S required  and I>I required . The lightest beam 
that meets the section modulus criterion is a 4×14 beam, with S=102in.3 . However, this beam does not meet the moment
of inertia criterion. The lightest beam that meets both criteria is a 6×16 beam, with S=220 in.3  and I=1710in.4 .

Step 5 Add the beam weight to the load diagram, and redraw the shear and moment diagrams. Since the specific weight of 
Southern yellow pine is 34 lb./ ft.3 , we need to interpolate, as described in Chapter 10.

w = [ 34 lb.

ft.3
−30 lb.

ft.3

40 lb.

ft.3−30 lb.

ft.3 ] (23.7 lb.
ft.
−17.8 lb.

ft. ) + 17.8 lb.
ft.

= 20.2 lb.
ft.

Using the Method of Superposition, we can add the effects of the 
point load and the distributed load to find the reaction force and 
reaction moment.

R A=V max=P+w L=800 lb.+20.2lb./ft.× 14ft.=1083lb.

M A=M max=−P a−
wbeam L2

2

=−800 lb.× 12ft.−20.2lb.
ft.

(14ft.)2

2
=−11,580ft.⋅lb.

S required=
M

σall.bending

=11,580ft.⋅lb. in.2

1400 lb.∣12 in.
ft.

=99.3 in.3

We have Sbeam=220 in.3  Since S beam>S required , the beam is OK in 
bending.

Using the Method of Superposition, we can add the effect of the beam weight to solve for Irequired. From Appendix F, the 

maximum deflection due to a uniform distributed load on a cantilever beam is Δmax=
w L4

8 E I
, therefore 

I required=
P a2(3 L−a)

6 EΔmax

+ w L4

8 EΔmax

=1171in.4+
20.2lb.(14ft.)4 in.2

8 ft. 1700 kip 0.5 in.∣ kip
103 lb.∣(12 in.)3

ft.3 =1368 in.4

We have I beam=1710 in.4  Since I beam>I required , the beam is OK in deflection.

Step 6 The beam can support a shear load of 
2 A τallowable

3
=2⋅85.3in.2

3
175lb.

in.2 =9,952 lb.  Since we are applying only 

1,083 lb. in shear, the beam is OK in shear.
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Example #6 – Point loads and a uniform distributed load on a 
timber beam

Select the lightest Southern yellow pine beam that will support the point 
loads and distributed load shown.

Step 1 Identify loads and design constraints. From Appendix E,
σ allowable bending=9.7 MPa , τ allowable=1.2 MPa , and ρ=550 kg/m3

Step 2 Solve for reactions by drawing an equivalent load diagram, where 
the uniform distributed load is equivalent to a 960 N point load.

R B=
−2500 N⋅2m+960 N⋅3m+800 N⋅7 m

6m
=580 N  and

R A=2500 N+960 N+800 N−580 N=3680 N

Step 3 Use the original load diagram to draw shear and moment diagrams, 
and identify maximum values V max=2500 N  and M max=5000 N⋅m .

Step 4 Recalculate the section modulus.

S required=
M

σall. bending

=5000 N⋅m
9.7 MPa ∣MPa m2

106 N ∣(103 mm )3

m3 =515×103 mm3

The lightest beam in Appendix E with a larger section modulus is a 50×300
beam, with S=519×103 mm3 .

Step 5 Add the beam weight to the load diagram, and redraw the shear and 
moment diagrams. Since the density of Southern yellow pine is 550 kg /m3 ,
interpolation is necessary.

m
L
= [ 550 kg

m3−480 kg

m3

640 kg

m3−480 kg

m3 ] (6.98 kg
m
−5.24 kg

m ) + 5.24 kg
m

= 6.00 kg/m

Multiply by gravity to obtain the weight per unit length w=m g
L
=6.00 kg

m
9.81 m

s2∣N  s2

kg m
=58.9 N/m
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Example #6 (continued)

Using the Method of Superposition and an 
equivalent load diagram, we can calculate 
the additional reaction forces at points A 
and B due to the weight of the beam.

R B=580 N+530 N⋅2.5 m
6 m

=801 N

RA=2500N+960 N+800 N
+530 N−801 N=3990 N

Redraw the shear and moment diagrams, and identify maximum values
V max=2618 N  and M max=5118N⋅m  

S required=
M

σall. bending

=5118N⋅m
9.7 MPa ∣MPa m2

106 N ∣(103 mm )3

m3 =528×103mm 3

The selected beam has a smaller value of S, so this beam is not strong 
enough in bending. Try again with the next-lightest choice, a 50×360 beam,
with S=721×103mm3 .

Recalculate the mass per unit length:

m
L
= [ 550 kg

m3−480 kg

m3

640 kg

m3−480 kg

m3 ] (8.23 kg
m
−6.17 kg

m ) + 6.17 kg
m

= 7.07kg/m

Multiply by gravity to obtain the weight per unit length:

w=m g
L
=7.07 kg

m
9.81 m

s2∣N  s2

kg m
=69.4 N/m
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Example #6 (continued)

Solve for reactions again. R B=580 N+624 N⋅2.5 m
6 m

=840 N  and

R A=2500 N+960 N+800 N+624 N−840 N=4045 N

Draw shear and moment diagrams, and identify maximum values
V max=2639 N  and M max=5139N⋅m  

S required=
M

σall.bending

=5139 N⋅m
9.7 MPa ∣MPa m 2

106 N ∣(103mm )3

m 3 =530×103mm3

Since the selected beam has a larger value of S, the beam is good in 
bending.

Step 6 The beam can support a shear load of

2 Aτall.

3
= 2⋅12.8×103mm 2⋅1.2 MPa

3 ∣ 106 N

MPa  m2 ∣ m2

(103mm)2
=10,240 N

Since we are applying only 2639 N in shear, the beam is OK in shear.

It is easy to compare the weights of steel W-beams because each beam's designation is nominal depth × weight/length (or 
nominal depth × mass/length for SI beams). Just look at the second number, and you can compare weights of different W-
beams.

This is not the case for timber beams, which are designated as nominal width × nominal depth. The second number does not
tell you anything about the weight of the beam. For example, a 2×10 timber beam is 28% lighter than a 4×6 timber beam. 
Instead, look at the weight per unit length in the columns at the right, in Appendix E.

All Other Beams

Beams can be made of other shapes and materials: aluminum extrusions, laminated wood with a nonrectangular cross-
section, steel pipe, and so forth. If your beam is neither a wide-flange steel beam nor a rectangular cross-section timber 
beam, follow these 6 steps (essentially the same as the Timber Beam process, except for Step 6).

Step 1 Identify all applied loads and design constraints.

Step 2 Draw the load diagram and calculate the reactions. Draw an equivalent load diagram if necessary.

Step 3 Draw shear and moment diagrams, and calculate Vmax and Mmax.

Step 4 Select the lightest beam that will support Mmax, or has enough stiffness to limit Δmax. Solve for S required=
M

σallowable
, 

then find the lightest beam that has a slightly larger value of S.

If the maximum deflection is specified, write the equation for Δmax, solve it for Irequired, then find the lightest beam that has a 
slightly larger value of I.

Step 5 Add the beam weight to the load diagram, and recheck moment and deflection. If S beam>S required , the beam is OK in 
bending, and if I beam> I required , the beam is OK in deflection. If either of these conditions is not met, pick a larger beam and 
recalculate.

Step 6 Check shear. For rectangular cross-sections, use V applied<
2 A τallowable

3
 as we did with timber beams. For all other 

shapes, rewrite the General Shear Formula τ=
V Q
I t net

 and use V applied<
τallowable I t net

Q
. The allowable shear stress for timber 

is given in Appendix E. Allowable shear stress for steel is 0.4σYS .
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Key Equations

Steel wide-fange beam design

Follow the 6-step method for steel W-beams, using Z required=
1.67 M
σYS

 and V applied≤0.4σYS d t w .

Timber beam design

Follow the 6-step method for timber beams, using S required=
M

σallowable bending
 and V applied<

2 A τallowable

3
.

All other beams

Follow the 6-step method for timber beams, using S required=
M

σallowable
 and V applied<

τallowable I t net

Q
.
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Chapter 12: Combined Stresses
Tension + Bending

Previous chapters discussed how to solve bending, torsion, tension, thermal, and pressure problems independently. Many 
real problems combine states of stress: a steam pipe restrained at both ends (pressure + thermal stress), horizontal beams in 
a tall building (vertical bending due to gravity + horizontal bending due to wind loads), or a bolt as it is tightened (torsion + 
tension). We can use the Method of Superposition to solve these problems. Calculate the stresses at a given point due to 
each loading condition, then add the stresses. We use the same method to calculate deflections.

Example #1 – Pipe loaded in tension and 
bending

A 2 meter long, 51 mm diameter Schedule 40 steel 
pipe is loaded axially in tension with a load of 60 kN.
The pipe is also a simply-supported beam, loaded 
transversely at the midspan with a load of 3 kN. 
Calculate the maximum stress in the pipe. Report the 
results in MPa.

Solution Using the Method of Superposition, add the 
maximum tensile stresses resulting from the axial 
load and the bending load. The tensile stress in the 
pipe due to the axial load is

σaxial=
Paxial

A
= 60 kN

710 mm2∣103 N
kN ∣MPa mm2

N
=84.5MPa

From the Formula Method (Appendix F), the maximum bending moment for this loading case is M max=
P L
4

 where P is 

the transverse load Ptransverse. Therefore, the bending stress is σbending=
M
S
=

P transverse L

4 S
.

Solving,  σbending=
3 kN⋅ 2m

4⋅9410 mm3∣103 N
kN ∣MPa mm2

N ∣103 mm
m

=159MPa .

The combined maximum stress is σcombined=σaxial+σbending=84.5MPa+159 MPa=244MPa . This maximum occurs on the
bottom side of the pipe at the midspan. (On the top side of the pipe at the midspan, the combined stress is
σcombined=σaxial−σbending=84.5MPa−159 MPa=−75 MPa .)

Bending in Two Directions

Consider a square cross-section beam loaded vertically at the midspan: the maximum bending stress occurs on the top and 
bottom surfaces. If the beam is loaded horizontally at the midspan, the maximum bending stress occurs on the side surfaces. 
We can add the stresses at the corners to find the extremes.

The beam deflects down and to the left; we can calculate these deflections, then combine them using trigonometry.
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Example #2 – Board loaded in bending in 2 
directions

A simply supported Douglas fir 2×4 timber is 84 in. long. It 
has a vertical load of 50 lb. and a horizontal load of 30 lb. at 
the midspan. Calculate the combined stresses at the edges of 
the beam, at the midspan (in psi). Also calculate vertical, 
horizontal, and total deflections (in inches).

Stress Solution From the Formula Method, the bending stress 

at the midspan due to the vertical load is σ y=
M x

S x

=
P y L
4 S x

 

where Sx is the section modulus about the x-x axis (listed in 

Appendix E). This stress is positive (tension) at points C and D, because they are on the far side of the beam from the 
applied load.

The stress is negative (compression) at points A and B, because they are on the same side of the beam as the applied load.

σ y=
P y L
4 S x

=50 lb.⋅84in.
4⋅3.06 in.3

=343 psi , therefore σ y(C )=σ y (D)=+343 psi  and σ y(A)=σ y(B)=−343 psi .

The bending stress at the midspan due to the horizontal load is σ x=
M y

S y

=
P x L

4 S y

. This stress is positive (tension) at points

A and C, negative (compression) at points B and D. Appendix E does not list Sy for timber beams, so we have to calculate 

it. I y=
hb3

12
=3.5in.(1.5in.)3

12
=0.984 in.4 , therefore S y=

I y

c
=

I y

(b /2)
= 0.984 in.4

(1.5 in. /2)
=1.313 in.3

σx=
P x L
4 S y

=30 lb.⋅84 in.
4⋅1.313 in.3=480psi , therefore σx (A)=σ x (C )=+480 psi  and σx (B)=σ x (D)=−480 psi .

The final step is to add the stresses at each location. The maximum tensile 
stress is 823 psi at point C; the maximum compressive stress is -823 psi at 
point B.

Defection Solution From the Appendix, deflection due to a point load at the 

midspan is Δmax=
P L3

48 E I
.

Vertical deflection is Δvert.=
P y L3

48 E I x

=
50 lb.(84 in.)3

48
in.2

1700 kips 5.36 in.4∣ kip
103lb.

=0.068 in.  downward.

Horizontal deflection is Δhoriz.=
P x L3

48 E I y

=
30lb. (84in.)3

48
in.2

1700 kips 0.984 in.4∣ kip
103 lb.

=0.221 in.  to the left.

Use trigonometry to find the combined deflection and its direction.

Δcombined=√Δhoriz.
2 +Δvert.

2 =√(0.221 in.)2+(0.068 in.)2=0.231 in.

θ=tan−1 Δvert.

Δhoriz.
=tan−1 0.068 in.

0.221 in.
=17.1°
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Eccentric Loading

Consider an axial member loaded in 
tension or compression. If the load path 
is not along the neutral axis, then a 
bending moment develops in addition to 
the axial load.

The weight of a traffic light hanging 
from a cantilever arm creates an axial 
stress σaxial=−P / A in the vertical 
support pole (negative because the load 
is compressive), while the weight times 
the moment arm creates a bending 
moment in the support pole, causing a 
bending stress.

We know that moment is force times perpendicular distance. In the diagram above, the eccentric distance e is the distance 
between the neutral axis of the post and the line of direction of the applied force. Therefore, the moment is M=P e . The 

bending stress at points A and B is σbending=±
M c

I
=±P e c

I
. The combined stress in the pole is

σcombined=σaxial+σbending=
−P

A
± P e c

I
. At point A, the bending stress is compressive, so σA=

−P
A
− P ec

I
. At point B, the 

bending stress is tensile, so σ B=
−P

A
+ P e c

I
.

The problem is more realistic if you include the weights of the arm and the pole. Let P1 = 
the weight of the light, P2 = the weight of the arm, and P3 = the weight of the pole. The 
method is the same, but now we have more terms. The combined stress in the pole is

σcombined=σaxial+σbending=
−(P1+P2+P 3)

A
±[ P1e1 c

I
+

P 2e2 c

I ]
Note: since we're calculating the stresses in the base of the vertical pole, the values of A, I,
and c are for the pole, not the arm.

Some problems that look like axial loading 
problems are actually eccentric loading problems. 
Consider this link in a conveyor belt chain. Pins in 
the two holes connect this link to neighboring 
links. To find the stresses at points A and B, cut 
the link as shown. The total stress at these points is

σcombined=σaxial+σbending=
P
A
±P e c

I x
 where A is the cross-sectional area at the cut 

section, and Ix is the moment of inertia in the link at the cut section. In this diagram, t
is the thickness of the link.
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A C-clamp or an arbor press is an eccentric load problem: 
the frame is eccentrically loaded with respect to the 
workpiece clamped between the anvils.

The cross-section of the body of a cast-iron C-clamp or 
arbor press is not a rectangle, because cast iron is weaker in
tension than in compression. The inside surface of the 
clamp is loaded in tension, therefore it needs more material 
than the outside surface of the clamp. Calculate the moment
of inertia of a compound shape, find the neutral axis, and 
determine two different values of c – one for the inside 
surface, and the other for the outside surface. Eccentricity e 
is the distance from the centerline of the clamp screw to the
neutral axis of the clamp body.

Another type of eccentric load involves a 
block of stone or concrete...a so-called short-
block problem. The block is short in 
comparison with a masonry column.

Consider a short masonry block with a 
vertical point load. If the load is concentric, 
then the stress at the base of the block is due 
to the point load and the weight of the block:

σ=−W
A
− P

A
. Both terms are negative 

because they are both compressive loads.

If the load is offset from the center, we have 
an eccentric load problem. The combined 
stress at the base of the block is the axial term
plus the bending moment term. The weight (a
concentric load) adds to the axial term, but 
not to the bending moment term.

The combined stress at the base of an 
eccentrically loaded short block is

σ=−W
A
− P

A
± P e c

I y
 where I y=

b d 3

12
.
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Example #3 – Short block with one eccentricity

A limestone block measuring 2.5 ft. × 4 ft. × 3 ft. has an 
eccentric load of 12 kips placed 1.5 ft. to the right of center as
shown. From Appendix B, the specific weight of the stone is 
0.0961 lb./in.3. Calculate the stresses at corners A, B, C, and 
D. Report the results in psi.

Solution Weight is specific weight times volume:

W=γV=0.0961lb.
in.3

2.5ft.×4ft.×3ft.∣(12 in.)3

ft.3
=4981lb. .

Axial stress due to the weight is

σW=
−W

A
= −4981lb.

2.5 ft.×4 ft.∣ ft.2

(12 in.)2
=−3.46 psi

Axial stress due to the point load is

σ P=
−P

A
= −12 kips

2.5ft.×4ft.∣103 lb.
kip ∣ ft.2

(12 in.)2
=−8.33psi

The moment of inertia of the plan-view of the block with 

respect to the y-y axis is I y=
b d 3

12
=2.5 ft.(4ft.)3

12
=13.3 ft.4

Bending stress due to the eccentric load is σbending=±
Pe c
I y

=±12 kips⋅1.5 ft.⋅2ft.
13.3 ft.4 ∣103 lb.

kip ∣ ft.2

(12 in.)2
=±18.75 psi

This stress is positive (tension) at points A and C, negative 
(compression) at points B and D.

Create a table to add up the stresses. Along the left edge of 
the block, the stress is 6.25 psi in tension; along the right 
edge, the stress is 31.25 psi in compression.

In a masonry structure, tensile stress leads to cracks because stone and 
unreinforced concrete tend to be many times stronger in compression 
than in tension. One type of short block problem is to find the optimum 
location of P such that no tensile stress develops. We want the stress at 

the left edge of this diagram to equal zero, so σ=0=−W
A
− P

A
+ P e c

I y
. 

Rewrite the equation to solve for e, then calculate the answer.
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Point σW (psi) σP (psi) σbending (psi) σtotal (psi)
A −3.46 −8.33 +18.75 +6.96
B −3.46 −8.33 −18.75 −30.54
C −3.46 −8.33 +18.75 +6.96
D −3.46 −8.33 −18.75 −30.54
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We can modify this short block problem by shifting the point load so it is
eccentric with respect to both the x-x and y-y neutral axes. Use the same 
technique as before, but add another term for the new eccentricity:

σ=−W
A
− P

A
±

P e1 c1

I y

±
P e2c2

I x

 where I y=
bd 3

12
 and I x=

d b3

12
. Now 

the short block problem starts to look like an Accounting problem. The 
way this block is drawn, eccentricity e1 will create a positive stress at A 
and C, a negative stress at B and D. Eccentricity e2 will create a positive 
stress at C and D, a negative stress at A and B. The maximum 
compressive stress occurs at point B because the bending stresses due to 
both eccentricities are negative at that corner; the maximum tensile stress
(or smallest compressive stress, if we don't achieve tension) is at point C,
because the bending stresses due to both eccentricities are positive at that
corner.

Example #4 – Short block with two eccentricities

The limestone block from Example #3 has an eccentric 
load of 12 kips placed 1.5 ft. to the right of center and 0.5 
ft. to the front of center. Calculate the corner stresses in 
psi.

Solution Axial stress due to the weight and the point load 
are the same as before: σW=−3.46psi  and 

σP=−8.33 psi . The moment of inertia with respect to the 

y-y axis is the same as before: I y=
b d 3

12
=13.3ft.4  The 

moment of inertia with respect to the x-x axis is

I x=
d b3

12
=

4ft.(2.5 ft.)3

12
=5.21 ft.4 .

Bending stress due to eccentricity e1 is the same as before:

σbending 1=±
P e1 c1

I y

=±12 kips⋅1.5 ft.⋅2ft.

13.3 ft.4 ∣103 lb.
kip ∣ ft.2

(12 in.)2
=±18.75psi . Bending stress due to eccentricity e2 is

σbending 2=±
P e2c2

I x

=±
12 kips⋅0.5 ft.⋅1.25ft.

5.21 ft.4 ∣103 lb.
kip ∣ ft.2

(12 in.)2
=±10 psi .

Create a table to add up the stresses. The 
maximum compressive stress is at the front right 
corner; the rear left is the only corner with a 
tensile stress.
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Solve a short-block problem in SI units the same way, except you will have to convert mass to weight: W=mg . For 
example, if a granite block measures 1 m by 0.8 m by 0.6 m high, the weight is

W=mg=ρV g=ρ bd h g=2.69 g

cm 3

1 m×0.8m×0.6 m 9.81m

s2∣N  s2

kg m ∣ kN

103N∣(100cm )3

m 3 ∣ kg

103g
=12.7kN

Once you have the weight, you can divide it by the area of the base to find the stress due to the weight:

σW=
W
A
=W

bd
= 12.7 kN

1m×0.8m∣kPa  m 2

kN
=15.8 kPa

It is actually simpler to solve for the stress algebraically in a single equation, because the b and d terms cancel out:

σW=
W
A
=ρb d h g

b d
=ρ h g=2.69g

cm3

0.6 m 9.81m

s2∣N  s2

kg m ∣(100 cm)3

m3 ∣ kg

103 g∣kPa  m2

103 N
=15.8 kPa

Key Equations

Combine stresses due to multiple loads by adding the individual stresses.

Solve short block problems with σ=−W
A
− P

A
±

P e1c1

I y

±
P e2c2

I x

 where I x=
d b3

12
 and I y=

bd 3

12
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Chapter 13: Statically Indeterminate Beams
Defning Determinate and Indeterminate Beams

We know how to calculate deflection, reactions, 
shear stresses, and bending stresses in beams that 
have two reactions (either two reaction forces, or a 
reaction force and a reaction moment). These 
problems have two unknowns and two equations 
(sum of the moments, sum of the forces). Since the 
number of unknowns equals the number of 
equations, we can solve the problems directly with 
simple algebra, and we call these problems statically
determinate.

From a design perspective, a statically determinate 
structure is risky; if one of the supports fails, the 
entire structure collapses. If you are building a deck, 
adding extra supports will preserve the deck even if 
one support is damaged. However, each additional 
support adds an unknown without adding an 
equation, so we cannot solve the problem directly; it 
is a statically indeterminate beam.

There are several methods for calculating unknown reaction forces for statically indeterminate beams. These methods use 
known quantities, such as known slopes or displacements (the integration method), known strain energies (Castigliano's 
theorem), or known zero-displacement conditions (superposition).

Method of Superposition

We can split a statically indeterminate problem into two statically determinate problems. Consider a propped cantilever 
beam: if we remove the prop, the end of the beam deflects downward by an amount Δ1 . If instead we remove the applied 
load and leave the prop in place, reaction force RC causes the end of the beam to deflect upward by an amount Δ2 . Since 
the end of the propped cantilever beam is a simple support and has zero deflection, Δ1=Δ2 . Use the Formula Method to 
find expressions for deflection, set them equal, and solve for reaction force RC.
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Procedure

Step 1 Identify the location of the extra support, having a force reaction only (no moment reaction).

Step 2 Remove the extra support from the original load diagram, and find the deflection formula in Appendix F for the 
location you selected in Step 1.

Step 3 Remove the applied loads from the original load diagram and find the deflection formula in Appendix F for the same
location used in Step 2.

Step 4 Set the deflection formulas equal to each other, and solve for the unknown reaction force.

Step 5 Use sum of the forces and sum of the moments to find the remaining beam reactions.

Example #1 – Cantilever beam with a point load and a roller support at the end

A propped 8 foot long cantilever beam has an applied load of 3 kips located 2 feet from the prop. Calculate the reaction 
forces and reaction moment. Report the results in kips and kip∙ft., respectively.

Step 1 Select the free end of the beam (Point A) for the deflection location.

Step 2 Remove support RA. From Appendix F, the deflection at Point A due to the applied load P is Δ1=
P b2

6 E I
(3 L−b) .

Step 3 Restore support RA and remove the applied load P. From Appendix F, the deflection at Point A due to a point load at

the free end is Δ2=
P L3

3 E I
. However, the point load P in this equation is actually RA, so Δ2=

RA L3

3 E I
.

Step 4 Set the deflection equations equal to each other: Δ1=Δ 2=
P b2

6 E I
(3 L−b)=

R A L3

3 E I
. Young's modulus and moment 

of inertia cancel, so the solution is independent of the cross-sectional shape and material of the beam:

P b2

6
(3 L−b)=

R A L3

3
. Divide both sides by 3 to get 

P b2

2
(3 L−b)=RA L3 . Solve for the reaction force,

RA=
P b2

2 L3 (3 L−b)=
3 kips(6ft.)2

2(8ft.)3
(3(8ft.)−6ft. )=1.90 kips

Step 5 Sum of the Forces gives us RB=P−RA=3.00 kips−1.90 kips=1.10 kips

Sum of the Moments gives us M B=P⋅b−R A⋅L=3.00 kips⋅6ft.−1.90 kips⋅8ft.=2.80kip⋅ft.
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Example #2 – Beam with three supports and a point load

A 3 meter long beam has an applied load of 300 kN located at the midspan. The beam is supported at the ends and with a 
third support 1 meter from the right end. Calculate the three reaction forces. Report the results in kN.

Step 1 Select location C for the deflection location.

Step 2 Remove support RC. From Appendix F, the deflection at Point C due 

to the applied load P at the midspan is Δ1=
P x

48 E I
[3 L2−4 x2]  for x< L

2
. 

Since x=2 m> L
2

, we have to flip the diagram, so x=1m , measured 

from the other end.

Step 3 Restore support RC and remove the applied load P. From Appendix 

F, the deflection at Point C due to a point load at Point C is Δ2=
P a 2 b2

3 E I L
. 

However, the point load P in this equation is actually RC, so Δ2=
RC a2 b2

3 E I L
.

Step 4 Set the deflection equations equal to each other: Δ1=Δ 2=
P x

48 E I
[3 L2−4 x2]= RC a 2b2

3 E I L
. Once again, E and I 

cancel. Solving, we get RC=
P x L

16a2 b2 [3 L2−4 x2]=300 kN⋅1 m⋅3 m
16 (2 m)2(1m)2

[3(3m)2−4(1 m)2 ]=323.4 kN

Step 5 Sum of the Moments about point A gives us M A=0=−300 kN⋅1.5 m+323.4 kN⋅2 m+RB⋅3 m . Solve for

R B=
300 kN⋅1.5 m−323.4 kN⋅2m

3m
=−65.6 kN . The negative sign means RB acts downward.

Sum of the Forces gives us R A=P−RB−RC=300 kN−(−65.6 kN)−323.4kN=42.2 kN , positive, therefore acting 
upward.

Once you have solved for the reactions, you can draw shear and moment diagrams to find maximum bending and shear 
stresses.
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Example #3 – Bending & shear stresses for Example 
#2

Calculate the maximum bending and shear stresses for Example 
#2, assuming a Southern yellow pine 250×560 timber. Ignore the 
weight of the beam. Report the results in MPa.

Solution Calculate the values on the shear diagram values as 
follows:

V 1=R A=42.2 kN

V 2=V 1−300 kN=−257.8 kN

V 3=V 2+323.4 kN=65.6 kN

V 4=V 3−65.6kN=0 kN

Calculate the values on the moment diagram as follows:

M 1=42.2 kN×1.5 m=63.3kN⋅m

M 2=M 1−257.8 kN×0.5 m=−65.6 kN⋅m

M 3=M 2+65.6 kN×1m=0 kN⋅m

The maximum moment, 65.6 kN⋅m, is at point C. The maximum 
bending stress is

σ=M
S
= 65.6 kN⋅m

12.0×106mm 3∣(103mm)3

m3 ∣MPa m2

103 kN
=5.47MPa ,

which is less than the allowable 9.65 MPa for Southern yellow pine, therefore the beam is OK in bending.

The maximum shear load is 257.8 kN, just to the right of the point load. The maximum shear stress for a rectangular cross-

section is τ=3 V
2 A

= 3⋅ 257.8 kN

2⋅132×103mm 2∣(103 mm)2

m2 ∣MPa m2

103kN
=2.93MPa , which is more than the 1.21 MPa allowable for 

Southern yellow pine, therefore the beam will fail in shear.

Each of these examples shows a single point load. If there is more than one point load, set up the problem by removing a 
support, then by removing the applied loads. Otherwise, the solution is the same as before.
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Distributed load problems are solved the same way.

Example #4 – Beam with three supports and a nonuniform 
distributed load

A 12 foot long 8×8 hem-fir timber beam has a nonuniform applied load as 
shown. The beam is supported at the ends and with a third support at the 
midspan. Calculate the three reaction forces due to the applied load and the 
weight of the beam. Report the results in pounds.

Solution Calculate the weight per unit length of the beam. Since the specific 
weight of hem-fir is 25 lb./ ft.3 , interpolation is necessary.

w = [ 25 lb.

ft.3
−20 lb.

ft.3

30 lb.

ft.3
−20 lb.

ft.3 ] (11.7 lb.
ft.
−7.81 lb.

ft. ) + 7.81 lb.
ft.

= 9.76 lb.
ft.

Now the beam has two loads: the applied nonuniform distributed load plus 
the beam weight. Each load will create its own elastic curve.
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Example #4, continued

Step 1 Select location C for the deflection location.

Step 2 Remove support RC. From Appendix F, the deflection at the midspan due to the weight of the beam is

Δ1=
5 wbeam L4

384 E I
, and the deflection at any location x due to the nonuniform distributed load is

Δ2=
wmax x

360 E I L
(3 x4−10 L2 x2+7 L4) , so the total deflection due to the loads is

Δ1+2=
5wbeam L4

384 E I
+

wmax x
360 E I L

(3 x4−10 L2 x2+7 L4) . At the midspan, x= L
2

, so the deflection equation simplifies to

Δ1+2=
5wbeam L4

384 E I
+

wmax L

360 E I L2 (3( L
2 )

4

−10 L2( L
2 )

2

+7 L4)=5 wbeam L4

384 E I
+

5wmax L4

768 E I
.

Step 3 Restore support RC and remove the applied nonuniform distributed load. From 

Appendix F,  the deflection is Δ3=
P L3

48 E I
 where P is RC.

Step 4 Set the deflection equations equal to each other:
RC L3

48 E I
=

5wbeam L4

384 E I
+

15wmax L4

2304 E I
. Terms L3, E and I cancel. Solving for RC we get

RC=48[ 5wbeam L

384
+

15wmax L

2304 ]=48[ 5 9.76 lb.12 ft.
384 ft.

+15 200 lb.12 ft.
2304 ft. ]=823 lb.

Step 5 Use an Equivalent Load Diagram and Sum of the Moments to find the reaction 
RB; use Sum of the Forces to find reaction RA.

R B=
117 lb.×6 ft.−823lb.×6 ft.+1200 lb.×8ft.

12 ft.
=447 lb.

R A=(117+1200−823−447)lb.=47 lb.

Once we have the reaction forces, we can draw shear and moment diagrams 
for the beam. With this loading case, it is a little complicated to find the 
places where the shear diagram crosses the zero axis. The easiest way to find 
these points and the values of the moment diagram is to solve for V and M 
computationally with a spreadsheet.

Many examples in Appendix F use dimensions a and b to locate the position of a point load or the starting or ending point 
of a distributed load. In the next example, there is more than one set of a and b dimensions. Subscripts help to keep them 
straight.
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Example #5 – Beam with three supports and a uniform distributed load

A 6.5 meter long beam has an applied uniform distributed load over a portion of its length. Solve for the reactions, 
ignoring the beam's weight.

Step 1 Select location C for the deflection location.

Step 2 Remove support RC. Use the equation in Appendix F that applies for x≥a1 . The deflection at point C due to the 

uniform distributed load is Δ1=
w a1

2(L−x)
24 E I L

(4 x L−2 x2−a1
2) .

Step 3 Restore support RC and remove the applied distributed load w. From Appendix F, the deflection at Point C due to a 

point load at Point C is Δ2=
P a 2

2 b2
2

3 E I L
. Since P in this equation is actually RC, Δ2=

RC a2
2 b2

2

3 E I L
.

Step 4 Set the deflection equations equal to each other: Δ1=Δ2=
wa1

2(L− x)(4 x L−2 x2−a1
2)

24 E I L
=

RC a2
2b2

2

3 E I L
. Cancel 3 E I L

and divide both sides by a2
2b2

2  to find 

RC=
w a1

2(L−x)(4 x L−2 x2−a2)
8a2

2 b2
2

=
4 kN

m

(3m)2(6.5 m−4.5 m) [4(4.5 m)(6.5 m)−2(4.5 m)2−(3m)2 ]
8(4.5 m)2(2 m)2

=7.50 kN

Step 5 Use an Equivalent Load Diagram and Sum of the Moments to find the reaction 
RB; use Sum of the Forces to find reaction RA.

R B=
12 kN×1.5 m−7.50 kN×4.5 m

6.5 m
=−2.42 kN  The negative sign means the 

reaction is pushing down...the right end of the beam wants to lift.

R A=(12−7.5−(−2.42) )kN=6.92kN
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Example #5, continued

Once we have the reaction forces, we can draw shear and moment diagrams for the 
beam. Since the beam weight is neglected, the V and M diagrams are easy to draw.

This final example includes two applied loads, one of which requires a mirror-image solution.

Example #6

A 14 ft. beam has a point load and a uniform distributed load. Ignoring the beam 
weight, find the reaction forces.

The deflection location is point C. 

The next steps are to remove support RC and the distributed load (left) to find Δ1, 
remove the point load and restore the distributed load to find Δ2, then remove the 
distributed load and restore support RC to find Δ3. Solve for RC by setting
Δ1+Δ2=Δ3
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Example #6, continued

From Appendix F, the 
deflection at point C due 
to the 500 lb. applied load 
is

Δx=
P b x(L2−b2−x2)

6 E I L
 

for x < a. Since x > a, we 
need to use a mirror image
of the beam.

Rewrite as

Δ1=
P b1 x1(L

2−b1
2−x 1

2)
6 E I L

For the uniform distributed load, the deflection equation is

Δ2=
w b2

2 x2 [ 4 L (L− x 2)−2 (L−x 2)
2−b2

2 ]
24 E I L

  for x 2<a2

The deflection at point C is Δ3=
RC a3

2 b3
2

3 E I L

Next, set the deflections due to the applied loads equal to the deflection due to the reaction force.

P b1 x1(L
2−b1

2−x1
2)

6 E I L
+

w b2
2 x2 [4 L(L− x2)−2(L− x2)

2−b2
2]

24 E I L
=

RC a3
2 b3

2

3 E I L

Multiply both sides by 24 E I L  to get  4 P b1 x1(L
2−b1

2−x1
2)+w b2

2 x2 [ 4 L (L− x2)−2(L− x2)
2−b2

2 ]=8 RC a3
2 b3

2

Next, divide both sides by 8 a3
2b3

2  to get RC=
4 P b1 x1(L

2−b1
2− x1

2)+w b2
2 x2 [4 L (L−x2)−2(L−x2)

2−b2
2 ]

8a3
2 b3

2
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Example #6, continued

Now enter numbers and units.

RC=
4⋅500lb.⋅2ft.⋅8ft.((14 ft.)2−(2 ft.)2−(8ft.)2)+70

lb.
ft.
⋅(5 ft.)2⋅6 ft. [4⋅14 ft.(14 ft.−6ft.)−2(14 ft.−6ft.)2−(5ft.)2 ]

8(6ft.)2(8ft.)2

RC=54.2 lb.

Draw an equivalent load diagram, then use the sum of the moments and sum 
of the forces to find the reaction forces at the ends.

RB=
500 lb.⋅2 ft.−54.2 lb.⋅6ft.+350 lb.⋅11.5 ft.

14 ft.
=335.7 lb.

R A=500lb.+350 lb.−54.2 lb.−335.7 lb.=460.1 lb.

Use the original load diagram to draw shear and moment diagrams in the 
usual way.

Key Equations

Use the Method of Superposition to solve statically indeterminate beam problems.
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Chapter 14: Buckling of Columns

Chapter 14: Buckling of Columns
Types of Columns

Squeeze a short cylindrical block
elastically, and the normal stress
is σ=P /A . Squeeze hard
enough to exceed the yield
strength, and the block will either
fail by distorting (if it is ductile)
or by fracturing (if it is brittle). A
ductile short block will yield at
the same load, whether it is in
tension or in compression.

Change the dimensions of the
cylinder so it is very long and
thin, and push on the ends: it will
form a gentle bow at a normal
stress that is less than the yield strength of the material. We call this a slender column.
You can make a slender column by cutting out the longest straight segment of a steel wire
coat hanger. Put one end on a kitchen scale and press on the other end; the wire will bow
under a force of a couple of pounds. If we measure a wire diameter of 0.087 in. and assume a
yield strength of 30 ksi, the wire will not yield in tension until the load reaches

P tension=σ A=
30 kips

in.2

π(0.087 in.)2

4 ∣103 lb.
kip

=178 lb.  In tension, it takes almost 200 lb. to permanently

deform the wire, while in compression it takes about 2 lb. – a difference of two orders of magnitude! The extreme example 
of a slender column is a rope or cable: high tensile strength; no compressive strength.

Between the short block and the slender column is the intermediate column, not as skinny as the slender column, but longer 
and thinner than the short block. Push on the ends, and an intermediate column forms a kink about halfway up, at a normal 
stress that is less than the yield strength of the material. You can make an intermediate column with a 3 mm diameter  piece 
of solder about 25 cm long.

Ideal Slender Columns

Euler Critical Load

Leonhard Euler, the Swiss mathematician who gave us the ex button on the calculator, studied the 
mathematics of columns. He derived an equation for the critical load that causes buckling in an ideal 

slender column that is pinned at both ends. The Euler critical load P cr=
π2 E I

L2  where I is the smallest 

moment of inertia for the cross-sectional area of the column. For example, if the column is a wide-flange 
beam, I y< I x , so use Iy. Euler's equation tells us the critical load for a 16.5 in. long coat hanger wire is

P cr=
π2 E I

L2 =π
2 E

L2

πd 4

64
= π2

(16.5in.)2

30×106lb.

in.2
π(0.087in.)4

64
=3.1 lb. , which is pretty close to, but not the 

same as, the 2 lb. measured in the kitchen. Why are the numbers different? Euler's equation assumes the 
wire is perfectly straight, the loads are applied in perfect alignment with the axis of the column, there are 
no materials defects in the steel, the cross-section is perfect and uniform along the length of the wire, there 
are no scratches on the wire's surface, and the ends can rotate freely with no friction.

What if you know the applied load, and have to select a solid round rod to support that load? Rewrite the Euler critical load 

equation, solving for diameter: P cr=
π2 E I

L2 =π
2 E
L2

πd 4

64
→ d= 4√ 64 P L2

π3 E
.
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Chapter 14: Buckling of Columns

Example #1 – Ideal pinned column with a square cross section

A 2024-T4 aluminum column made of 2 cm square barstock is loaded as a pin-
connected column. Calculate the Euler critical load for this column if the length is 3 m. 
Report the result in kN.

Solution The moment of inertia of a solid square is I=
bh3

12
=

b4

12
.

From Appendix B, E = 70 GPa.

Pcr=
π2 E I

L2
=π

2 b4 E

12 L2
=π

2(2 cm)4 73GPa

12 (3m)2 ∣ 106 kN

GPa m 2∣ m4

(100 cm)4
=1.07 kN

Euler Stress

Recall the definition for radius of gyration of an area: rG=√ I /A . Square both sides to get rG
2= I /A . The Euler critical 

load divided by the cross-sectional area of the column gives us the stress in the column:
Pcr

A
=σcr=

π2 E I

L2 A
=
π2 E rG

2

L2 = π2 E

(L / rG)
2 . The quantity L/rG is called the slenderness ratio of the column; the larger this value,

the more slender the column. If rGx is not equal to rGy, use the smaller of the two numbers for rG.

Support Conditions

The end of a column can have one of three
support conditions. It can be pinned: free to
rotate, but prevented from sliding sideways. It
can be fixed, like the wall-end of a cantilever
beam: prevented from rotating or sliding. It can
be free to rotate and slide, like the free end of a
cantilever beam.

If both ends are pinned, the column bows in an
arc equal to the length of the column. The
effective length of the column is its own length.

If both ends are fixed, then the column cannot
rotate at its ends. It bows in the center relative to
two inflection points located L/4 from each end,
so the effective length of the bow is half the
column length, and Leff=0.5 L .

If one end is fixed while the other is pinned, then
the column can rotate about the pinned connection. The column bows over an effective length Leff=0.7 L .

A fixed & free column looks like a flagpole; a pteranodon landing on the tip will cause the flagpole to
sway. The column bows over an effective length that is twice its actual length: Leff=2 L .

We can modify Euler's critical load equation to include these support conditions: P cr=
π2 E I

(KL)2
 where K is the effective 

length factor 1, 0.5, 0.7, or 2, as appropriate. Likewise, the Euler stress is σcr=
π2 E

(KL / rG)
2 .
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Chapter 14: Buckling of Columns

These equations help us find the load and stress when buckling first starts, assuming perfect loading conditions and 

materials. In real life, we need to include a Factor of Safety, so P cr=
π2 E I

(KL)2 F.S.
 and σcr=

π2 E
(KL / rG)

2 F.S.
.

Example #2 – Ideal fxed column with a hollow round cross section

A nominal 4 inch Schedule 40 steel pipe 35 feet long is used as an Ideal fixed column. 
Using a factor of safety of 2, calculate the load that the pipe can support; report the result 
in kips. Calculate the stress in the pipe; report the result in ksi.

Solution Since the column is fixed, K=0.5 . From Appendix D, a standard 4 inch pipe 
has a moment of inertia I=7.23 in.4 , a radius of gyration rG=1.51 in. , and a cross-
sectional area of 2.96 in.2.

Pcr=
π2 E I

(KL)2 F.S.
= π2

(0.5⋅35ft.)2 2

30×106 lb.

in.2
7.23 in.4∣ kips

103 lb.∣ (ft.)2

(12 in.)2
=24.3kips

σcr=
π2 E

(KL
rG
)

2

F.S.

= π2

(0.5⋅35ft.
1.51 in. ∣12 in.

ft. )
2

⋅2

30×106 lb.

in.2∣kips

103 lb.
=7.65 ksi

The solution methods described so far apply in general, but there are several special cases requiring special formulas. Here 
are two special cases: wide-flange steel beams used as structural columns, and steel machine parts.

Structural Steel Columns Made from W-Beams

W-beams are often used as columns in steel structures. AISC recommends using the following formulas for calculating the 
allowable load. A factor of safety is built in to the equations.

If 
KL
rG

>200  then the column is too slender for safe use; stop all calculations, and pick a shorter or deeper column.

If 
KL
rG

>4.71√ E
σYS

 then the column is slender, and Pall=0.525σ cr A

If 
KL
rG

<4.71√ E
σYS

 then the column is intermediate, and Pall=
0.658(σYS /σcr )σYS A

1.67

Solve Structural Steel Column problems in four steps:

1. Calculate KL /rG  and 4.71√E/σYS . Since rGy<rGx  for W-beams, use rGy 

2. Calculate σcr 

3. Use the appropriate formula to calculate Pall

4. Use σ=Pall /A  to find the stress in the column
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Example #3 – W-beam used as a fxed & pinned column

A 30 m long W200×59 wide-flange beam made from A36 steel is used as a fixed and pinned 
column. Calculate the allowable load; report the result in kN. Calculate the stress in the column; 
report the result in MPa.

Solution Since the column is fixed and pinned, K=0.7 . From Appendix D, rGx=89.7 mm  and
rGy=51.8 mm . Use the smaller of these numbers. From Appendix B, the yield strength of A36 

steel is 250 MPa.

KL
rG

=0.7⋅30 m
51.8mm ∣103 mm

m
=405

Since 
KL
rG

>200 , the column is too slender for safe use.

Example #4 – W-beam with a shorter length used as a fxed & pinned column

Solve Example #3 using a 12 m long W200×59 wide-flange beam.

Solution The material and dimensional properties are the same as in Example #3.

KL
rG

=0.7⋅12 m
51.8mm ∣103 mm

m
=162.2

4.71√ E
σYS

=4.71√ 207 GPa
250 MPa∣103 MPa

GPa
=136

Since KL
rG

>4.71 √ E
σYS

, use Pall=0.525σ cr A  where σ cr=
π2 E

(KL /rG)
2 . We can plug in the 

calculated value of KL/rG from above.

σcr=
π2207 GPa

(162.2)2 ∣103MPa
GPa

=77.7 MPa

Pall=0.525σcr A=0.525⋅77.7 MPa⋅7550 mm2∣ 103 kN

MPa m2 ∣ m2

(103mm )2
=308 kN

The actual stress in the column is σ=
P all

A
= 308kN

7550mm 2∣MPa m2

103kN∣(103 mm )2

m2 =40.8MPa

Steel Machine Parts

Structural columns are large – several feet to dozens of feet tall. Machines also use long, thin compression members, such as

connecting rods in internal combustion engines. If KL
rG

≥√ 2π2 E
σYS

 then the column is slender, and the allowable stress is

σall=
π2 E

(KL /rG)
2F.S.

. This is the Euler equation for ideal columns. As before, rG is the smaller value of rGx and rGy.
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On the other hand, if KL
rG

<√ 2π2 E
σYS

 then the column is intermediate. Based on empirical data from real machine parts, J.B. 

Johnson developed a formula for the allowable stress: σall=[1−σYS (KL / rG)
2

4 π2 E ] σYS

F.S.
.

Calculate the allowable load of a steel machine part by multiplying the allowable stress by the cross-sectional area.

Example #5 – Steel machine part with a solid round cross section used as a 
fxed & pinned column

A 20 inch long , 1 inch diameter steel rod with a yield strength of 35 ksi is used as a fixed and 
pinned column with a Factor of Safety of 2. Calculate the allowable stress in the machine part; 
report the result in ksi. Calculate the the allowable load in the machine part; report the result in 
kips.

Solution Since the column is fixed and pinned, K=0.7 . The radius of gyration of a solid circle 
is one quarter the diameter, so rG = 0.25 in.

KL
rG

=0.7⋅20 in.
0.25 in.

=56

√2 π2 E
σYS

= KL
rG

<√2 π2⋅30×103 ksi
35 ksi

=130

Since KL
rG

<√ 2π2 E
σYS

, the column is intermediate.

σall=[1−σYS (KL / rG)
2

4π2 E ] σYS

F.S.
=[1− 35ksi (56)2

4π230×103ksi ] 35 ksi
2

=15.9ksi   and  Pall=σall A=15.9 kips

in.2
π(1in.)2

4
=12.5 kips

Some machine design problems start with a known load and column length; your job is to calculate the minimum diameter 
of a solid round rod to allow the column to survive buckling. Remember that the radius of gyration of a solid round rod is 

d/4 and the allowable stress is σall=
P
A
= P
(π/4 )d 2 , then follow these six steps:

Step 1 Assume the column is slender (because the math is easier): σall=
π2 E

(KL /rG)
2 F.S.

= P
(π /4)d 2

Step 2 Rewrite 
P

(π /4)d 2=
π2 E

(KL / rG)
2F.S.

 to solve for diameter.

Step 3 Check that the column really is slender.

Step 4 If the column is not slender, then σall=[1−σYS (KL / rG)
2

4π2 E ] σYS

F.S.
= P

(π /4)d 2

Step 5 Rewrite the equation to solve for diameter. This is a little tricky because of the number of terms.

Step 6 Check that the column really is intermediate; if it isn't, you made a mistake someplace.

If the cross-sectional area of the column is a different shape (such as a rectangle), follow these steps, using the appropriate 
equations for area and rG.
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Hollow Columns

The radius of gyration is defined as rG=√ I
A

 where I is the moment of inertia of the cross section, and A is the cross-

sectional area. If the cross section is an asymmetrical compound shape, then use the Transfer Formula in Chapter 6 to find I.

However, for simpler hollow columns where the outer and inner shapes share the same neutral axes, rG=√∑ I

∑ A
.

If a hollow column is made of a circular pipe with outer diameter do and inside diameter di, we know how to find I=I o− I i  
and A=Ao−Ai  using formulas in Appendix C. However, it is important to realize that you cannot simply add or subtract 
radii of gyration: rG≠rGo−rGi . Going back to the definition,

rG=√∑ I

∑ A
=√ I o− I i

Ao−Ai

=√
π

64
(d o

4−d i
4)

π
4
(d o

2−d i
2)
=√ d o

4−d i
4

16(d o
2−d i

2)
=√ (d o

2+d i
2)(d o

2−d i
2)

16(d o
2−d i

2 )
=√d o

2+d i
2

4
 

This is the same formula given in Appendix C for a hollow circle.

Example #6 – Radius of gyration of a hollow square column

Calculate the radius of gyration for a hollow square column with a circular cavity, where each of the 
square's sides s=6cm  and the circle diameter d=5cm .

Solution The moments of inertia of the shapes are I square=
s4

12
=(6cm )4

12
=108cm 4  and

I circle=
π

64
d 4= π

64
(5 cm)4=30.7cm 4

. 

The areas of the two shapes are Asquare=s2=(6 cm)2=36 cm 2  and Acircle=
π
4

d 2=π
4
(5cm )2=19.6cm2

The radius of gyration of the hollow column is rG=√∑ I

∑ A
=√ I square−I circle

Asquare−Acircle

=√108cm 4−30.7cm 4

36 cm2−19.6 cm2 =2.17cm

What if we had calculated the radius of gyration of each shape, and subtracted the results?

rG square=√ I square

Asquare

=√ 108cm 4

36 cm2
=1.73cm  and rG circle=√ I circle

Acircle

=√ 30.7cm4

19.6cm2
=1.25cm

Subtracting, rG square−rG circle=1.73cm−1.25cm=0.48cm

The actual value is 4.5 times bigger, so this is clearly the wrong way to solve the problem. Since rG is squared in the Euler 
stress equation, the final result will be off by a factor of 4.52, which is about a factor of 20.
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Key Equations

Ideal Slender Columns 

The Euler critical load is P cr=
π2 E I

(KL)2 F.S.
, and the Euler critical stress is σcr=

π2 E
(KL / rG)

2 F.S.
 In all calculations involving 

rG be sure to use the smaller value of rGx and rGy.

Structural Steel Columns 

If 
KL
rG

>200  then the column is too slender for safe use.

If 
KL
rG

>4.71√ E
σYS

 then the column is slender, and Pall=0.525σ cr A

If 
KL
rG

<4.71√ E
σYS

 then the column is intermediate, and Pall=
0.658(σYS /σcr )σYS A

1.67

Stress in the column is σ=
Pall

A

Steel Machine Columns 

If KL
rG

≥√ 2π2 E
σYS

 then the column is slender, and the allowable stress is σ all=
π2 E

(KL / rG)
2 F.S.

.

If KL
rG

<√ 2π2 E
σYS

 then the column is intermediate, and σ all=[1−σYS(KL / rG)
2

4π2 E ] σYS

F.S.
.

Calculate Pall=σall A

To find the smallest allowable diameter of a round solid rod, follow the 6-step procedure described in the chapter.
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Chapter 15: Visualizing Stress and Strain

Chapter 15: Visualizing Stress and Strain
Measuring Stress

We can see deformation, if it's large enough, but we cannot see stress, and in most cases we cannot measure it directly. 
Instead, we can use a strain gauge to measure the strain on the surface of an object that is being elastically deformed, and 
use Young's Modulus to estimate the stress.

The earliest strain gauges in the 1930s were made of fine 
wire. If you glue a very thin wire along the bottom 
surface of a beam, then load the beam in bending, the 
wire will stretch and become thinner. The thinner the 
wire becomes, the higher its electrical resistance. By 
measuring this resistance you can determine strain, then 
calculate stress as σ=E⋅ε , provided the object is being 
strained elastically. 

Modern strain gauges use the same principal, but are made of thin metal foil instead of wire. 
The foil is embedded in a pad that is easy to glue to the part being tested.

The longer the conductor, the more sensitive the gauge. With a foil strain gauge, the conductor 
loops back on itself many times. The total wire length is the loop length times twice the 
number of loops; in this cartoon, the total length is 14 times the loop length.

Stress at the Base of a Short Block

Consider the short block with a point load that is offset 
from both neutral axes. The total stress at the four corners
is -3.75 psi, -41.25 psi, +16.25 psi, and -21.25 psi. 

In plan view, point C has a tensile stress, while points A, 
B, and D have compressive stresses.

We can calculate the stress at any point along the edges 
by interpolating between the corner stresses, because the 
stress varies linearly from one corner to the next. For 
example, the location of the zero stress point between 

corners C and D is 4 ft.
16.25 psi

16.25 psi+21.25 psi
=1.73ft.  

from point C, or 4 ft.−1.73ft.=2.27ft.  from point D.

Likewise we can calculate the stresses within the area of 
the block by interpolating between the edge stresses.
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Chapter 15: Visualizing Stress and Strain

One way to visualize these stresses is with a grid pattern 
in plan view, identifying the stress at each location, or 
node. In the diagram, the nodes are at half-foot intervals.

Alternatively, we can calculate contour lines of stress 
(a.k.a. isostress lines), coloring the spaces between the 
lines. The pattern shows that the pink areas are in tension,
while the blue areas are in compression. The picture helps
us see that the isostress lines are diagonals, and there is a 
zero stress line stretching from the AC edge to the CD 
edge.

Mohr's Circle

Normal and shear stresses in uniaxial tension

Take a tensile bar, cut it in half transversely to the axis, 
and glue the bar back together. If you pull on the bar 

along the x-axis, a normal stress σ x=
P
A

 develops in the 

adhesive. Area A is the cut surface area of the bar (the 
cross-sectional area). There is no shear stress, because the
adhesive is not loaded in shear. Consider a little square 
piece of adhesive: it has a normal stress σx acting on the 
left and right faces, but no normal stress on the top or 
bottom faces, and no shear stresses.
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Chapter 15: Visualizing Stress and Strain

Cut a similar tensile bar in half along its x-axis, and glue 
the bar back together. If you load the bar as shown, a 

shear stress τ= P
A

 develops in the adhesive. Again, area 

A is the cut surface area of the bar. There is no normal 
stress, because the adhesive is only loaded in shear. A 
little square piece of adhesive has a shear stress acting on 
the top and bottom faces, in the x direction. The square 
becomes a parallelogram as it distorts.

We could call this shear stress τx, because it acts along the
x direction. Think about how the little square of adhesive 
distorts relative to other little squares of adhesive on its 
left and right: its neighbors try to prevent the piece from 
parallelogramming, so there are shear stresses in the y 
direction too. The stress required to produce the 
parallelogram is the same along each edge, so τx=τ y ; 
we'll use a single term τxy=τx=τ y . A positive shear 
stress is one that distorts the square clockwise relative to 
its base; a negative shear stress distorts the square 
counterclockwise.

Cut another bar at an angle to the axis, and glue it back 
together. If you pull on the bar, the adhesive is loaded in 
normal tension and in shear. The two segments of the bar 
want to pull away from each other and slide along each 
other. Let's define two new axes, x' and y', perpendicular 
and parallel to the cut surface. We have a shear stress τ 
acting parallel to the cut surface, and a tensile stress σx' 
acting perpendicular to the cut surface, in the x' direction.

We don't have to actually cut the bar and use an adhesive;
instead, we can imagine the stresses that act in various 
directions within the material. Draw a square that 
represents the piece of adhesive, and rotate it in different 
directions. We can calculate the stresses in the x' and y' 
directions by using equations from Statics: sum of the 
forces in any particular direction equals zero.
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Chapter 15: Visualizing Stress and Strain

First, draw the square element. In the general case, there 
could be a vertical normal stress σy, so include this stress 
in the sketch.

Next, cut the square along a diagonal in the y' direction, 
so the normal stress acting on this surface is σx' and the 
shear stress acting on this surface is τx'y'. The new x'-y' 
coordinate axes are tilted at angle θ counterclockwise 
from the original x-y coordinate axes.

The square has a depth (the thickness of the stressed 
part), so each edge is actually an area in three 
dimensions. Let the area of the cut surface be area a. 
Using trigonometry, the area of the left surface is a cosθ  
and the area of the bottom surface is asin θ .

The force acting on each face is equal to the stress times 
the area. We have 6 forces acting on the triangular body.

153

y

x

cut

σ
x

σ
x

σ
y

σ
y

τ
xy

τ
xy

τ
xy

τ
xy

θ

y

x
τ

x'y'σ
x

y'

x'

σ
x'

σ
y

τ
xy

τ
xy

θ

τ
x'y

a

σ
x'
a

σ
y
 a sinθ

τ
xy 

a cosθ

τ
xy 

a sinθ

θ
σ

x
 a cosθ

θ

Area a sinθ

Area a cosθ
Area a



Chapter 15: Visualizing Stress and Strain

Look at the components of the forces acting in the x' 
direction. If you add them up, the sum is zero.

σx ' a=σ x acos2θ+σ y asin2θ+2τ xy a cosθsinθ

Notice that area a cancels, so we can write

σ x '=σ x cos2θ+σ y sin2θ+2 τ xy cosθsinθ

There are some trig identities that will help simplify the 

equation into something useful: cos2θ=1+cos 2θ
2

,

sin2θ=1−cos2θ
2

, sin 2θ=2 cosθ sinθ , and

cos2θ=cos2θ−sin2 θ .

Now we get

σ x '=σx

1+cos 2θ
2

+σ y

1−cos 2θ
2

+τ xysin 2θ

=
σx+σx cos 2 θ+σ y+σ y cos 2θ

2
+τxy sin 2θ

=
σx+σ y

2
+
σx−σ y

2
cos 2θ+τxy sin 2θ

Following the same procedure, we can calculate the sum 
of the forces in the y' direction.

τ x ' y ' a=−σ x a cosθsin θ+σ y a sinθ cosθ
−τ xy asin 2θ+τ xy a cos2θ

Area a cancels. Using the trig identities, we can simplify 
the equation:

τx ' y '=(−σ x+σ y )cosθsinθ+τ xy(cos2θ−sin2 θ)

=−(σ x−σ y)
sin 2θ

2
+τ xy cos 2θ

=
−(σ x−σ y)

2
sin 2θ+τ xy cos 2θ

We can calculate the stress in the y' direction by taking 
angle θ+90° . Using free-body diagrams and trig 
identities, we get:

σ y '=
σx+σ y

2
−
σx−σ y

2
cos 2θ−τ xy sin 2θ
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Chapter 15: Visualizing Stress and Strain

Now we have three equations that are functions of σx, σy, 
and τxy, and θ. Let's pick values of normal and shear 
stresses, and see how σx', σy', and τx'y' vary by plotting 
stress vs. angle θ. The graph at the right shows σx' as a 
function of angle θ if we pick σ x=1ksi , σ y=0.5 ksi , 
and τxy=1.2 ksi . The graph is a sine wave, with peaks, 
valleys, and zero values. Picking different values of  σx, 
σy, and τxy will change the amplitude and vertical position
of the sine wave, but not the period.

Notice that the maximum values of σx' occur at θ=40 °  
and 220°, the minimum values occur at θ=130°  and 
310°, and σ x '=0  at θ=100° , 155°, 283°, and 385°.

This graph shows σy' as a function of angle θ for the same
set of σx, σy, and τxy.

The maximum values of σy' occur at θ=130°  and 310°, 
the minimum values occur at θ=40 °  and 220°, and
σ y '=0  at θ=13° , 65°, 193°, and 235°.

This graph of σy' is shifted 90° to the right of the graph of 
σx'; as a result, you can find the angles for the maximum 
values of σy' by adding 90° to the angles for the maximum
values of σx'.

This graph shows τx'y'  as a function of angle θ for the 
same set of σx, σy, and τxy.

The maximum values of τx'y' occur at θ=175°  and 355°, 
shifted 45° from the maximum values of σx. The 
minimum values of τx'y' occur at θ=85°  and 265°, and
τx ' y '=0  at θ=39° , 129°, 219°, and 309°.

We can see how the three stresses interrelate by plotting 
them together. There are normal stresses for which the 
shear stress is zero, and there are shear stresses for which 
the normal stress is zero. The values and angles depend 
on the input conditions (σx, σy, and τxy).

Let's take another look at the equations for σx' and τx'y':

σx '=
σ x+σ y

2
+
σ x−σ y

2
cos 2θ+τ xy sin 2θ

τx ' y '=
−(σ x−σ y)

2
sin 2θ+τ xy cos2θ

Rewrite the σx' equation, putting two terms on the left:

σx '−
σ x+σ y

2
=
σ x−σ y

2
cos 2θ+τ xy sin 2θ
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Chapter 15: Visualizing Stress and Strain

Square both sides of the σx' and τx'y' equations:

(σ x '−
σ x+σ y

2 )
2

=(σ x−σ y

2 )
2

cos22θ+(σ x−σ y) τ xy sin 2θ cos 2θ+τxy
2 sin2 2θ

τx ' y '
2 =(σ x−σ y

2 )
2

sin2 2θ−(σ x−σ y) τxy sin 2θcos 2θ+τ xy
2 cos2 2θ

Next, add these two equations together:

(σ x '−
σ x+σ y

2 )
2

+τ x' y'
2 =( σ x−σ y

2 )
2

cos22θ+(σ x−σ y ) τ xysin 2θcos 2θ+τ xy
2 sin22θ

+(σ x−σ y

2 )
2

sin2 2θ−(σ x−σ y) τ xy sin 2θ cos2θ+τ xy
2 cos2 2θ

We can eliminate two terms because (σ x−σ y) τ xy sin 2θcos 2θ−(σ x−σ y) τ xy sin 2θ cos 2θ=0 . Rewriting the equation, we 
have:

(σ x '−
σ x+σ y

2 )
2

+τ x' y'
2 =( σ x−σ y

2 )
2

(cos2 2θ+sin 22θ)+τ xy
2 (sin 22θ+cos2 2θ)

Using the trig identity cos22θ+sin2 2θ=1 , the equation simplifies to (σ x '−
σ x+σ y

2 )
2

+τ x' y'
2 =( σ x−σ y

2 )
2

+τ xy
2 .

The term 
σ x+σ y

2
 is an average of two stress values, so let's call it σavg. Now the equation is even simpler:

(σ x '−σavg)
2+τ x ' y '

2 =(σ x−σ y

2 )
2

+τ xy
2 . If we define the right side of the equation as R=√(σ x−σ y

2 )
2

+τ xy
2  then

(σ x '−σavg)
2+τ x ' y '

2 =R2 . This is the equation of a circle with a radius R and a center at coordinates (σavg ,0) . In 1880, Otto
Mohr developed this method for visualizing stresses in two-dimensional and three-dimensional objects. His graphical 
method is also used for diagramming strains. We can use Mohr's Circle to determine the value and direction of maximum 
stresses within a loaded part.

Follow this 6-step process for drawing Mohr's circle for the stresses acting at a point within a stressed object. For best 
results, use a compass and straightedge on graph paper. 

In this example, use the same stresses as before:
σ x=1ksi , σ y=0.5 ksi , and τxy=1.2 ksi .

Step 1 Draw two axes. Label the horizontal axis σ and the
vertical axis τ.
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Chapter 15: Visualizing Stress and Strain

Step 2 Mark the center of the circle at coordinates
(σavg ,0)  and label it C for center. In this case,

σ avg=
σx+σ y

2
=1ksi+0.5 ksi

2
=0.75ksi .

Step 3 Mark points (σ x ,−τ xy)  and (σ y , τ xy)  on the 
graph; in this case, (1ksi ,−1.2 ksi)  and
(0.5 ksi ,1.2 ksi ) . Label these points A and B.

Step 4 Placing your compass point at the center of the 
circle, draw a circle passing through points A and B. The 
radius of Mohr's circle is:

R=√(σ x−σ y

2 )
2

+τ xy
2

=√(1 ksi−0.5 ksi
2 )

2

+(1.2 ksi)2=1.226 ksi

A straight line connecting points A and B is the diameter 
of Mohr's circle.

Step 5 The maximum normal stress (σ1) occurs at point D,
and the minimum normal stress (σ2) occurs at point E. 
These two stresses are called Principal Stresses. The 
maximum shear stress (τmax) occurs at point F.

You can measure these values off the graph, or you can 
calculate them:

σ1=σavg+R=0.75ksi+1.226 ksi=1.976ksi

σ2=σavg−R=0.75 ksi−1.226 ksi=−0.476 ksi

τmax=R=1.226ksi
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Chapter 15: Visualizing Stress and Strain

Step 6 Starting on line segment A-C, measure the angle 
counterclockwise about point C to line segment C-D. This
angle is 2θ.

tan 2θ=
2 τ xy

σx−σ y

=
2(1.2 ksi)

1ksi−0.5 ksi
=4.8

2θ=tan−14.8=78.2°

θ=78.2°
2

=39.1°

This is the angle of the principal stress σ1. The angle of 
principal stress σ2 is θ=90°+39.1°=129.1° .

Going back to the original stress element, we had
σ x=1ksi , σ y=0.5 ksi , and τxy=1.2 ksi . If we rotate 

the element counterclockwise 39.1°, in this orientation 
there are no shear stresses, and the principal stresses are
σ1=1.976 ksi  tension and σ2=−0.476 ksi  

compression. The maximum shear stress τmax=1.226 ksi
is oriented 45° from the maximum normal stress, at
θ=45°+39.1 °=84.1° .

Terms and Equations for Mohr's Circle

σx 
Applied normal stress in the x direction, which could be from tension or compression (P/A), bending (Mc/I 
or M/Z), hoop stress (p di/2t), longitudinal stress (p di/4t), etc.

σy 
Applied normal stress in the y direction, which could be from tension or compression (P/A), bending (Mc/I 
or M/Z), hoop stress (p di/2t), longitudinal stress (p di/4t), etc.

τxy Applied shear stress. Could be from bending (VQ/It), torsion (Tc/J), applied shear load (P/A), etc.

R Radius of Mohr's circle, equal to maximum shear stress τmax and calculated as R=√(σ x−σ y

2 )
2

+τ xy
2

Point A Point on Mohr's circle, plotted as (σx, -τxy)

Point B Point on Mohr's circle, plotted as (σy, +τxy)

Point C Point on Mohr's circle, plotted as (σavg, 0) where σ avg=(σ x+σ y)/2

Point D Principal stress σ1 which is the maximum normal stress, calculated as σ1=σavg+R

Point E Principal stress σ2 which is the minimum normal stress, calculated as σ 2=σavg−R

θ
Angle at which the principal stresses act. All angles on Mohr's circle axes are double angles. Calculate as

tan 2θ=
2 τ xy

(σx−σ y)
. One common mistake is to enter τmax in place of τxy.

x', y' Axes along which the principal stresses act.
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Example #1 – Rod loaded in uniaxial tension

A brass rod with a diameter of 0.5 inches is pulled with a load of 2000 lb. as shown. Calculate the 
applied stresses σx, σy, and τxy. Use Mohr's circle to find the principal stresses σ1 and σ2, angle θ, and 
the maximum shear stress τmax at point 1.

Solution 

The applied normal stress is in the y direction; there is no applied shear stress.

σx=0           σ y=
P
A
= 4 P

π d 2=
4⋅2000 lb.

π(0.5in.)2∣ kip

103 lb.
=10.2 ksi           τ xy=0

σ avg=
σx+σ y

2
=0 ksi+10.2ksi

2
=5.09 ksi

R=√(σ x−σ y

2 )
2

+τ xy
2

=√(0 ksi−10.2ksi
2 )

2

+(0 ksi)2 = 5.09 ksi

σ1=σavg+R=5.09 ksi+5.09 ksi=10.2 ksi

σ2=σavg−R=5.09 ksi−5.09 ksi=0ksi

τmax=R=5.09ksi

Angle θ=0 , by inspection, confirming that the maximum normal 
stress (principal stress #1) is the normal stress in the y direction.

Rotate line segment B-C about point C to create line segment C-F 90° to
the principal stress direction. Since all angles in Mohr's circle are 
double angles, we see that the maximum shear stress acts 45° to the 
principal stresses.

This photograph of a broken tensile specimen proves the existence of 
the maximum shear stress acting 45° to the axis of the rod. The 
specimen is pulled beyond its yield strength. Internally, microscopic 
voids form in a plane perpendicular to the axis; these voids coalesce to 
form a crack that grows from the center towards the surface of the rod. 
At some point, there is not enough material to support the load, and the
rod shears at 45°, creating the classic cup-and-cone fracture surface of 
a ductile tensile specimen.
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Example #2 – Rod loaded in tension and torsion

The rod in Example #1 is pulled as before, and also twisted with a torque of 45 ft.∙lb.

Solution 

Once again the applied normal stress is in the y direction, but the torque creates an applied shear 
stress.

σ x=0

σ y=
P
A
= 4 P

π d 2=
4⋅2000 lb.

π(0.5in.)2∣ kip

103 lb.
=10.2 ksi  as before

τxy=
T c
J

 where c= d
2

 and J=πd 4

32

(see Chapter 7 – torsion in a round shaft produces a shear stress at the surface)

Substituting, τ xy=
T d

2
32

πd 4=
16 T

πd 3=
16 45ft⋅lb.

π(0.5 in.)3 ∣12in.
ft. ∣ kip

103 lb.
=22.0 ksi

σ avg=
σx+σ y

2
=0 ksi+10.2ksi

2
=5.09 ksi

R=√(σ x−σ y

2 )
2

+τ xy
2

=√(0 ksi−10.2ksi
2 )

2

+(22.0 ksi)2 = 22.6ksi

σ1=σavg+R=5.09 ksi+22.6 ksi=27.7 ksi

σ 2=σavg−R=5.09 ksi−22.6ksi=−17.5 ksi

τmax=R=22.6 ksi

tan 2θ=
2τ xy

σx−σ y

=
2(22.0ksi )

0ksi−10.2 ksi
=−4.32

2θ=tan−1−4.32=−77.0° ;   θ=−77.0 °
2

=−38.5° ;   −38.5°+90 °=51.5°

We can also use Mohr's circle to find out the stress in a plane at any angle α. Rotate counterclockwise through angle 2α 
from line segment A-C to a new line segment A'-C to find the shear and normal stresses acting in this direction.
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Example #3 – Pressurized cylindrical tank

A cylindrical tank with a 20" inside diameter and a ¼" wall
thickness is pressurized to 700 psi. If the barrel of the tank 
is made from a strip of steel welded in a spiral at 65°, what 
are the normal and shear stresses acting on the weld?

Solution 

From Chapter 4,

σ x=σ long=
p d i

4 t
=700 psi 20 in.

4 0.25 in. ∣ksi

103psi
=14ksi

σ y=σ hoop=
p d i

2 t
=700 psi 20 in.

2 0.25in. ∣ksi

103 psi
=28 ksi

τ xy=0

Now solve the Mohr's circle equations.

σavg=
σ x+σ y

2
=14 ksi+28ksi

2
=21ksi

R=√( σx−σ y

2 )
2

+τ xy
2 = √(14 ksi−28 ksi

2 )
2

+(0 ksi)2 = 7ksi

σ1=σavg+R=21 ksi+7 ksi=28ksi

σ2=σavg−R=21ksi−7 ksi=14ksi

τmax=R=7ksi

Angle θ=0 , by inspection.

Rotate counterclockwise through angle 2α=2⋅65°=130 °  from line segment A-C to a new line segment A'-C. The normal
stresses acting perpendicular and parallel to the weld are σ avg±Rcos 2α=21 ksi±7 ksi cos(130° )=16.5 ksi &25.5 ksi . 
The shear stress acting along the weld R sin 2α=7 ksi sin(130° )=5.4 ksi .

Since the normal stress acting on the spiral weld is 91% of the maximum normal stress (the hoop stress), the weld 
efficiency can be as low as 91% before the tank will fail at a weld.

If the tank were manufactured like welded pipe, with a longitudinal weld instead 
of a spiral weld, then anything less than 100% weld efficiency would cause the 
tank to fail at the weld instead of splitting in the base metal from excessive hoop 
stress.

The end cap welds can have as little as 50% weld efficiency and still survive, 
because the longitudinal stress is 50% of the hoop stress.

Chapter 9 discussed normal and shear stresses in beams. We can use Mohr's circle to look at the normal and shear stresses at
any location within a beam.
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Example #4 – Beam loaded in bending and in 
compression along its axis

A 4 cm × 12 cm titanium bar is loaded as a beam and as a 
compression member. Find the stresses in the bar 1 cm 
above the neutral axis, at the midspan.

Solution 

First, determine whether the bar will fail in buckling. From 

Chapter 14, P cr=
π2 E I

L2 .

If the load is greater than Pcr, then the bar fails in buckling. The moment of inertia about the weak axis is

I=12 cm (4 cm)3

12
=64 cm 4 , therefore Pcr=

π2 114 GPa 64cm4

(3 m)2 ∣ 106 kN

GPa  m 2∣ m4

(100 cm)4
=80 kN . Since the applied axial load 

is less than 80 kN, the bar does not buckle.

The axial stress in the bar is 

σ xaxial=
P
A
= −25kN

4cm⋅12cm∣MPa m2

103 kN ∣(100 cm )2

m2
=−5.21 MPa

The bending stress in the bar at the top or bottom surface is

σx bending=
M c

I
, but we need the bending stress at a location 1 cm 

above the neutral axis, so σx bending=
M y

I
 where y=1cm . The 

beam is being bent in the strong direction, so

I=4 cm (12cm )3

12
=576 cm4

σ xbending=
7.5 kN⋅m 1 cm

576cm 4 ∣MPa m2

103kN ∣(100cm )3

m3
=13.0MPa

Add the axial and bending stresses together to find the total stress in 
the x direction.

σ xtotal=σx axial+σ xbending=−5.21MPa+13.0 MPa=7.81 MPa

σ y=0

Shear stress in the beam is τ xy=
V Q
I t net

 where

Q=A' y=(4cm×5cm )3.5 cm=70cm3

τ xy=
5kN 70cm3

576cm 4 4cm∣MPa  m2

103 kN ∣(100 cm )2

m2
=1.52 MPa
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Example #4, continued

Now solve the Mohr's circle equations.

σ avg=
σx+σ y

2
=7.81MPa+0 MPa

2
=3.91MPa

R=√( σx−σ y

2 )
2

+τ xy
2 = √(7.81 MPa−0 MPa

2 )
2

+(1.52MPa)2 = 4.19MPa

σ1=σavg+R=3.91MPa+4.19MPa=8.10 MPa

σ 2=σavg−R=3.91MPa−4.19 MPa=−0.29MPa

τmax=R=4.19MPa

tan 2θ=
2 τ xy

σx−σ y

=
2(1.52MPa )
7.81MPa−0

=0.389

2θ=tan−1(0.389)=21.3°

θ=21.0°
2

=10.6° ;  10.6°+90 °=100.6 °

Example #5 – Cantilever tube loaded in bending, tension, and 
torsion

A 6 ft. long, 3 in. diameter thin-walled hollow tube has a wall thickness of 
0.060 in. The tube is loaded in tension, torsion and bending, as shown, and it is
pressurized to 450 psi. P x=600 lb. , P y=150 lb.  and T=75ft.⋅lb. . Points 1 
and 2 are on the surface of the tube at the midspan (3 ft. from the wall), with 
point 1 at the neutral axis and point 2 at the top.

The x direction is horizontal along the axis of the pipe, the y direction is 
vertical, and the z direction is horizontal and transverse to the axis of the pipe.

Solution Calculate the normal and shear stresses due to the applied loads, then 
add up the terms. Horizontal applied load Px creates a tensile stress σ x=P x /A  
at points 1 and 2. Vertical applied load Py creates a a shear stress τ xy=VQ / It  
at point 1 and a bending stress σ x=Mc / I  at point 2. Torque T creates a shear
stress τ xy=Tc / J  at point 1 and a shear stress τ xz=Tc /J  at point 2. Pressure 
p creates a hoop stress σ y= p d i /2 t  at point 1, a hoop stress σ z= p d i /2 t  at 
point 2, and a longitudinal stress σ x= pd i /4 t  at points 1 and 2.

After combining the σx terms, the σy terms, the σz terms, the τxy terms, and the τxz terms. Draw Mohr's circle for point 1 
using σx, σy, and τxy. Draw Mohr's circle for point 2 using σx, σz, and τxz.
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Example #5, continued

First, calculate quantities that will be needed in multiple equations.

Inside diameter d i=d o−2 t=3in.−2×0.060 in.=2.88 in.

Dimension c=
d o

2
=3in.

2
=1.5 in.

Cross-sectional area A=π
4
[d o

2−d i
2]=π

4
[ (3 in.)2−(2.88in.)2 ]=0.5542 in.2

Moment of inertia about the x-x axis I x=
π
64

[ do
4−d i

4 ]= π
64

[(3 in.)4−(2.88in.)4 ]=0.5990 in.4

Polar moment of inertia about the x-x axis J x=
π
32

[ do
4−d i

4 ]= π
32

[(3 in.)4−(2.88in.)4 ]=1.198 in.4

Net thickness of the pipe wall t net=2×wall thickness=2(0.060 in.)=0.120 in.

Stresses due to axial load Px only

At points 1 and 2, σ x1=σ x2=
P x

A
= 600 lb.

0.5542 in.2=1,083 psi

Stresses due to transverse load Py only

There is no bending stress at point 1 because it is at the neutral axis.

To calculate the bending stress at point 2, we need the bending 
moment at the midspan of a cantilever beam due to a point load at the 
free end. Use the Formula Method to find
M x=3ft.=−P y x=−150lb.×3ft.=−450 ft.lb.

Bending stress σ x2=
M c

I
=450ft.lb. 1.5in.

0.5990 in.4 ∣12 in.
ft.

=13,520 psi

Vertical load Py creates a shear stress τ=
V Q
I t net

 due to bending at 

point 1 but not at point 2, where shear stress due to bending is zero.

Point 1 is at the neutral axis, so A' is the cross-sectional area of a half 

pipe: A'=π
8
[ do

2−d i
2 ]=π

8
[(3in.)2−(2.88in.)2 ]=0.2271in.2

The distance from the neutral axis to the center of gravity of a half pipe is

ȳ=
2 [d o

3−d i
3 ]

3π [do
2−d i

2 ]
=

2 [(3in.)3−(2.88in.)3 ]
3π [3in.2−(2.88in.)2 ]

=0.9360 in.

Q=A' ȳ=0.2271 in.2×0.9360 in.=0.2593 in.3 , so τ xy1=
V Q
I t net

= 150lb. 0.2593 in.3

0.5990 in.4 0.120 in.
=541 psi

Stresses due to torque T only

Torque produces the same value of shear stress at points 1 and 2.

τ xy1=τ xz2=
T c
J
=75 ft.lb. 1.5in.

1.198in.4 ∣12 in.
ft.

=1,127 psi
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Example #5, continued

Stresses due to pressure p only

At both points, longitudinal stress σ x1=σ x2=
p di

4 t
=450 lb.

in.2

2.88 in.
4 0.060 in.

=5,400 psi

At both points, hoop stress σ y1=σz2=
pd i

2 t
=450 lb.

in.2

2.88in.
2 0.060 in.

=10,800 psi

Mohr's Circle for Point 1

σ x1=1,083 psi+5,400 psi=6,483 psi           σ y1=10,800 psi           τ xy1=1,127 psi+541psi=1,668 psi

σavg1=
σ x1+σ y1

2
=6,483 psi+10,800 psi

2
=8,642 psi

R=√(σx1−σ y1

2 )
2

+τ xy1
2

=√( 6,483 psi−10,800 psi
2 )

2

+(1,668 psi)2=2,727 psi

σ P1# 1=σavg1+R=11,370 psi     σ P1# 2=σavg1−R=5,914 psi

tan 2θ=
2 τ xy

σx−σ y

= 2 (1,668 psi)
6,483 psi−10,800 psi

=−0.773

2θ=tan−1(−0.773)=−38 ° ,   θ=
−38 °

2
=−19 ° ,   −19 °+90 °=71 °

Mohr's Circle for Point 2

σ x2=1,083 psi+13,520psi+5,400 psi=20,003psi           σ z2=10,800psi           τ xy2=1,127 psi

σavg2=
σ x2+σ z2

2
=20,003psi+10,800psi

2
=15,402 psi

R=√(σx2−σz2

2 )
2

+τxz2
2

=√( 20,003 psi−10,800 psi
2 )

2

+(1,127 psi)2=4,738 psi

σ P2# 1=σavg2+R=20,140psi   σ P2# 2=σavg2−R=10,664psi

tan 2θ=
2 τxy

σx−σz

= 2(1,127 psi )
20,003 psi−10,800 psi

=0.24

2θ=tan−1 0.24=14° ,   θ=
14 °

2
=7° ,   7 °+90 °=97 °
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Key Equations

The average normal stress (center of Mohr's circle) is σavg=
σx+σ y

2
, and the radius is R=√(σ x−σ y

2 )
2

+τ xy
2

The principal stresses are σ1=σavg+R  and σ2=σavg−R . The maximum shear stress τmax=R

Find the angle of principal stresses with

tan 2θ=[ τ xy

(σ x−σ y

2 ) ] → 2θ=tan−1[ τ xy

(σ x−σ y

2 ) ] → θ=[2θ]
2

and 90 °+[2θ]
2
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Chapter 16: What it All Means
This introductory textbook teaches you the foundation of Strength of Materials. You can build on this foundation with 
additional knowledge to solve more advanced problems in the design of machine elements (gears, connecting rods, 
bearings, shafts, cams) and civil engineering structures (buildings, columns, roof trusses, bridges).

We made many simplifying assumptions in this textbook in order to learn the basics. For example, we ignored the weight of
beams and shafts when first learning how to calculate reaction forces, reaction moments, and stresses. In many problems, 
we applied only one design criterion, but in real life, engineers design products and structures to maximize several 
performance criteria, usually while minimizing cost.

Thermal Expansion

Chapter 3 focused on materials which expand uniformly in all directions. Some ceramics, polymers, and composites expand
to a different extent in each direction. For example, carbon atoms join together in atom-thick sheets to form graphite. The 
atomic bonds within the sheet are stronger than the atomic bonds between parallel sheets, and strong bonds prevent a 
material from expanding. As a result, when graphite is heated, it expands 27 times as much in the direction perpendicular to 
the sheets as it does in the direction parallel to the sheets. Some ceramics have a crystal structure enabling them to expand in
two perpendicular directions (x and y) while contracting in the third direction (z).

Chapter 3 did not consider thermal expansion and thermal stress in composite 
materials. One example of a laminar composite is a bimetallic strip, made of two 
dissimilar metal sheets bonded together. Metal A has a greater thermal expansion 
coefficient than metal B. As the strip heats up, metal A expands more than metal B, and 
the strip begins to curve. We can use this behavior to build a thermometer, because the 
higher the temperature, the greater the curvature. Kitchen oven thermometers use 
bimetallic strips.

Pressure Vessels

In Chapter 4 we focused on thin-walled pressure 
vessels, where the hoop stress on the inside surface is 
about the same as the hoop stress on the outside 
surface. Carbonated beverage cans are good examples –
the wall is very thin compared with the diameter of the 
can. We also ignored external pressure, so the analysis 
does not apply to a buried tank or a sunken pipe.

Thick-walled pressure vessels have a higher stress at 
the inside surface than at the outside surface, so we 
need a different set of equations to analyze stress.

One difficulty is deciding on the transition point between thin- and thick-walled vessels. In Chapter 4 we said a pipe is thin-
walled if the ratio of wall thickness to inside radius is t / ro<0.1 . Where does this ratio come from?

The hoop stress for a thin-walled pressure vessel is σ hoop( thin−walled)=
pd i

2 t
, Substituting t=½ (d o−d i) , we find that

σ hoop( thin−walled )=
pd i

2 t
=

p d i

2(½ (do−d i))
=

p d i

d o−d i

. In a thick-walled pressure vessel, the maximum hoop stress is on the inside 

surface, and is equal to σ hoop( thick−walled)=
p(d o

2+d i
2)

d o
2−d i

2 . Thick-walled equations are more accurate because they assume the 

stress can vary from the inside to the outside of the pressure vessel. Taking the ratio of the thin-walled solution to the thick-

walled solution, we get 
σhoop (thin−walled )

σhoop(thick−walled )

=
p d i (d o

2−d i
2)

(do−d i) p(do
2+d i

2)
=

d i (do
2−d i

2)
(d o−d i )(do

2+d i
2)

.
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It's easy enough to invent values of di and do, 
enter them into a spreadsheet, and graph the 
result as a function of t/ro. The graph shows 
that the thin-walled solution produces an error
for any wall thickness; the greater the ratio of 
t/ro, the greater the error. We see that the thin-
walled equation is 95% accurate for
t / ro=0.1 , 90% accurate for t /ro=0.2 , and 
86% accurate for t /ro=0.3 . Therefore, our 
assumption that the thin-walled solution is 
good for t /ro<0.1  is based on a decision 
that 5% error is acceptably small, and that a 
sensible factor of safety will take care of this 
error.

Stress Concentrations

Chapters 4 and 7 discussed stress 
concentrations in four cases: three flat bars 
loaded in tension, plus a round rod loaded in 
torsion. In machine design textbooks you can 
find dozens of additional cases (bending, 
combined bending and torsion, etc.) The best-
known source is Peterson's Stress 
Concentration Factors (see Bibliography).

Stress concentrations can be design features or they can be defects in materials. For example, United Airlines flight 232 
crashed in Sioux City, Iowa, in July 1989 because a hard metallurgical defect in a titanium fan disk acted as a stress 
concentration site for fatigue cracks. When the fan disk ruptured, it cut through the hydraulic lines, and the pilots crash-
landed the aircraft by adjusting engine thrust, since they couldn't control the flaps. The hard defect was only about 1 mm 
across.

Beams

Chapters 8 through 13 posed problems with uniform cross sections and uniform materials. Many
beams have varying cross sections as shown at the right, or are made of composites such as 
steel-reinforced concrete. You can find solutions to these types of problems in more advanced 
Strength of Materials textbooks and in Roark's Formulas for Stress and Strain (see 
Bibliography). Finite element analysis is often required for complex shapes.

In beam design, we focused on four constraints: minimizing deflection and weight (a proxy for 
cost) while maximizing bending strength and shear strength. Most real engineering problems 
have multiple constraints, including size, compatibility with neighboring parts, corrosion 
resistance, materials availability, manufacturability, health & safety, etc.

Formula Method

Appendix F includes about a dozen cases, but you can find hundreds more in Roark's Formulas for Stress and Strain, 
including many more beam loading conditions, pressure vessels, stress concentrations, flat plates, curved beams, columns, 
thermal stresses, etc.
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Columns

Chapter 14 discusses ideal columns and two special cases: W-beams used as structural steel columns, and steel machine 
elements. Buckling formulas exist for other special cases:

Material Source of equations Factors infuencing buckling

Aluminum The Aluminum Association Alloy, heat treatment, usage

Concrete reinforced 
by rebar

The American Concrete Institute Concrete strength, placement of rebar

Concrete-steel 
composite

The American Institute of Steel Construction Material strength, design (filled tube vs. 
encased steel member)

Timber The American Forest and Paper Association (National 
Design Specificaiton for Wood Construction)

Wood species, wood grade, moisture level, 
load duration

In each special case there are formulas for slender columns and different formulas for intermediate columns. The reason for 
the difference is that the failure modes are different: slender columns bow, while intermediate columns kink. The column 
problems teach you to use the right equation, because the wrong one gives different results. Consider a solid round steel 
machine part with a 1 cm diameter that is loaded as a pinned column. If the yield strength is 400 MPa, then

√ 2π2 E
σYS

=√ 2π2 207GPa
400 MPa

103MPa
GPa

=101 . If 
K L
rG

≥101  then the column is slender, and P all=σall A= π2 E A
(KL /rG)

2F.S.

If 
K L
rG

<101 then the column is intermediate, and P all=σall A=σall=[1−σYS(KL / rG)
2

4π2 E ]σYS A

F.S.

Plotting Pall vs. L, we find that the column length at 
the transition is 25.3 cm. Columns shorter than 25.3 
cm are intermediate; columns longer than 25.3 cm 
are slender.

If you use the slender equation (blue curve) when the
column is actually intermediate, you will think the 
column can support more load than it really can, and 
the column will collapse. If you use the intermediate 
equation (red curve) when the column is actually 
slender, you will think the column can support less 
load than it realy can, and you will waste material. 
Look at where the red curve meets the horizontal 
axis: the intermediate equation says that a 1 cm 
diameter pinned column of alloy steel cannot support
any load if it is longer than 35 cm...which defies 
common sense.

Mohr's Circle

With computer stress analysis widely available, why would anybody need to understand Mohr's circle? One reason is that 
principal stresses help us predict failure of mechanical and structural parts.

Theories of Failure

Design engineers don't prevent failure, they manage it by designing products and structures so that when they fail due to old 
age, abuse, or ordinary service, nobody is injured. How do we define failure? It depends on the product or structure. A 
bridge deck could be described as a failure if it deflects too far, even though it does not break. A shear pin in a snowblower 
fails if it does not break when the blades are overloaded by ice, or does break under ordinary snow load.
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In Strength of Materials, elastic formulas do not work in the plastic zone, and 
usually we do not want plastic deformation during service, therefore we can 
define failure as yielding for most products or structures.

William Rankine, a 19th century Scottish engineer, developed the Maximum 
Normal Stress Theory for materials having the same strength in tension and 
compression (such as steel, not cast iron or wood). He proposed a failure stress 
criterion σ f=σP max  where σf is the failure stress and σPmax is the maximum 
principal stress. If we plot principal stresses σ1 and σ2 on x and y coordinates, 
the part is considered safe if the combined stress point is within the shaded 
square.

Charles-Augustin de Coulomb, a 19th century French physicist, and Henri 
Tresca, a 19th century French engineer, developed the Maximum Shear Stress 
Theory (or Tresca Theory), defining failure as τ f=τmax=(σmax−σmin)/2 . This 
theory is more conservative than the Maximum Normal Stress Theory, as it has 
a smaller “safe zone”.

Metals have a linear elastic stress-strain curve before yielding. 
The area under the curve equals the strain energy per unit volume,
u=(σε)/2 .

Richard Edler von Mises was a Jewish mathematician who 
escaped Austria when the Nazis rose to power, and later joined 
the faculty at Harvard University. From the energy per unit 
volume equation, he derived σ f =√σ1

2−σ1σ2+σ2
2  for 

calculating failure stress from principal stresses. The von Mises or
Maximum Distortion Energy Theory produces an elliptical “safe 
zone”.

On all three principal stress graphs, the “safe” envelopes all pass through the same four points on the two axes, marked in 
red. Several other failure theories apply to special cases, such as the Maximum Strain Theory of Barré de Saint-Venant, and 
the Internal Friction Theory. However, von Mises is used in finite element software programs because it fits the most data.

Mechanical Properties

The materials properties listed in Appendix B are either minimum values or typical values for room-temperature conditions.
As the temperature rises, all of these properties will change. Metals become softer, weaker, and less stiff at higher 
temperatures, so if you are designing a steel conveyor system in an oven, you will need to know the yield strength and 
stiffness of steel at oven temperatures.

Heat treatment, alloying, and cold work alters the mechanical properties of metals significantly. For example, heat treatment
can increase the yield strength of 8620 alloy steel from 385 to 560 MPa. Type 304 stainless steel has a yield strength of 205 
MPa in the fully-annealed (soft) condition, but cold work (rolling or drawing) increases the yield strength to as high as 965 
MPa – more than 4½ times stronger! Appendix B lists the yield strength of cold-rolled Type 304 stainless steel as 760 MPa, 
but there is a range of strengths available, depending on the degree of cold work. You can order this material in the ⅛ hard, 
¼ hard, ½ hard, or fully hardened condition.

Design rules for composites, polymers, and ceramics are different because these materials behave differently than metals. 
For example, many polymers have a nonlinear elastic stress-strain curve. Composite materials can have more than one 
Young's modulus: as the load increases, the soft matrix can fail while the strong fiber reinforcement is carrying the load.
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Chapter 16: What it All Means

Conclusions

• Models. The real world is more complicated than the mathematical models presented in this textbook. No model 
matches reality perfectly, but some models are more useful than others.

• Accuracy. Most materials properties are only known to 2 or 3 places, so it makes no sense to report an answer with more
significant digits.

• Problem-solving. Now that you have finished the book, you know that defining the problem is the hard part. Once a 
problem is defined, the rest is just math.
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Appendix A: Units
SI System of Units

The SI system of units (Système International), also 
commonly called the metric system, uses prefixes to 
indicate scale. Learn the prefixes, and unit conversion 
will become easy. For example, 1 kN is 103 newtons, 1 
MPa is 106 pascals, and 1 Pa is 1 N/m2. These are the 
same prefixes we use with computer memory 
(megabytes, gigabytes, terabytes, etc.)

If you are converting 600 kN/m2 to MPa, you can either 
convert everything to the lowest level of meters and 
newtons:

Prefix Abbrev. Multiplier Literal meaning
nano- n  = 10−9 dwarf (Greek)

micro- µ  = 10−6 small (Greek)

milli- m  = 10−3 thousand (Latin)

centi- c  = 10−2 hundred (Latin)

kilo- k  = 103 thousand (Greek)

Mega- M  = 106 great (Greek)

Giga- G  = 109 giant (Greek)

Tera- T  = 1012 monster (Greek)

600kN
m2 ∣103 N

kN ∣MPa m2

106 N
=0.6 MPa

or you can recognize that 1 MPa is equal to 103 kPa and 
take fewer steps:

600 kN

m2 ∣MPa m2

103 kN
=0.6 MPa

A very useful SI conversion factor for stress:

Quantity Unit Symbol Definition
Length meter m
Mass kilogram kg

Force or Weight newton N kg⋅m /s2

Stress or Pressure pascal Pa N /m2

Moment or Torque newton meter N⋅m

1 MPa=1 N/mm 2

US Customary System of Units

The US Customary system of units, also called the 
English system, generally does not use prefixes to 
indicate scale; the exception is “kips” for “kilopounds” 
(1000 lb.). Instead, we use conversion factors to go from 
one scale to the next.

Quantity Unit Symbol Definition
Length foot ft.
Mass slug S

Force or Weight pound lb. S⋅ft./s2

Stress or Pressure lb. per sq. in. psi lb./ in.2

Moment or Torque foot pound ft.⋅lb.

Most US Customary unit symbols are abbreviations with periods: “ft.” not “ft”, “in.” not “in”; 
exceptions include “psi” and “ksi” which have no periods. 

The construction industry uses the length term “yard” to mean “cubic yard” or 27 cubic feet.

Gravitational Constant

The acceleration of gravity at sea level is g = 9.81m/s2 = 32.2 ft./s2

Unit Equivalent
1 ft. = 12 in.

1 yard = 3 ft.
1 kip = 1,000 lb.
1 ksi = 1,000 psi
1 ton = 2,000 lb.

Which Unit System is Easier to Use?

In most strength of materials problems, the unit system makes no difference to the difficulty of the problem, so the system 
you are most familiar with is the easiest for you to use. Beam design problems are simpler to solve in US Customary units 
because steel W-beams are sold by weight per unit length in the US, and by mass per unit length in SI countries. Therefore, 
an SI beam design problem requires the extra step of converting mass to weight.
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Appendix B: Materials Properties
Apply a load to a material and measure the response to obtain Mechanical Properties such as yield strength, Young's 
modulus, elongation, impact resistance, and fatigue life. All other properties are called Physical Properties, including 
thermal expansion, electrical conductivity, density, color, and specific heat. Some properties vary very little, while others 
have large ranges. For example, Young's modulus for steels varies less than ±1½% because this property is related to bond 
strength at the atomic level. The yield strength of a grade of steel can vary ±15% due to variations in composition and 
processing. The weakest steels have a yield strength < 25 ksi, while the strongest have a yield strength > 300 ksi. 

Table B1: Materials Properties at Room Temperature (U.S. Customary units)

Material Specific
weight

Yield
strength
(tension)

Ultimate
strength
(tension)

Ultimate
strength

(compression)

Ultimate
strength
(shear)

Young's
modulus

Shear
modulus

Thermal
expansion
coefficient

Poisson's
ratio

γ σYS σUTS σUCS τult E G α ν

(lb./in.3) (ksi) (ksi) (ksi) (ksi) (106 psi) (106 psi) (10-6 in./
(in.°F))

-

Steels
ASTM A36 0.284 36 58 - - 30 12 6.5 0.25
ASTM A992 (HSLA) 0.284 50 65 - - 30 12 6.5 0.25
AISI 80X (HSLA) 0.284 80 100 - - 30 11.6 6.5 0.28
AISI 1020, annealed 0.284 43 57 - - 30 12 6.8 0.25
AISI 1020, cold rolled 0.284 48 65 - - 30 12 6.8 0.25
AISI 1040, annealed 0.284 51 75 - - 30 12 6.3 0.25
AISI 1040, cold rolled 0.284 60 90 - - 30 12 6.3 0.25
AISI 4140, annealed 0.284 61 95 - - 30 12 6.8 0.25
AISI 8620, annealed 0.284 56 78 - - 30 12 6.2 0.25
Stainless steels
Type 304, annealed 0.290 30 75 - - 28 12.5 9.6 0.29
Type 304, cold rolled 0.290 110 150 - - 28 12.5 9.6 0.29
Type 409, annealed 0.280 30 55 - - 29 11.3 6.5 0.28
Cast irons
Grade 4 austempered ductile iron 0.260 155 200 - - 24.4 9.4 5.9 0.25
Class 35 gray cast iron 0.260 - 35 125 48.5 10.9 6.4 7.2 0.29
Aluminum alloys
2024-T4 0.101 47 68 - 41 10.6 4.0 12.9 0.33
6061-T6 0.098 40 45 - 30 10.0 3.8 13.1 0.33
7075-T6 0.101 73 83 - 48 10.4 3.9 13.1 0.33
Magnesium alloys
AZ80A, as extruded 0.065 36 49 - 22 6.5 2.4 14.0 0.35
AZ80A, T5 temper 0.065 40 55 - 24 6.5 2.4 14.0 0.35
Copper alloys
C10800 copper, hard drawn 0.323 32 40 - 26 17.0 6.4 9.4 0.33
C26000 cartridge brass, annealed 0.308 16 48 - 34 16.0 6.0 11.1 0.38
C26000 cartridge brass, rolled 0.308 52 70 - 42 16.0 6.0 11.1 0.38
C63000 aluminum bronze, annealed 0.274 53 111 - - 17.0 6.4 9.0 0.33
Titanium alloys
Ti-6Al-4V, annealed 0.160 120 130 - 80 16.5 6.1 4.8 0.34
Ti-6Al-4V, heat treated 0.160 160 170 - - 16.5 6.1 4.8 0.34
Concrete & Stone
Unreinforced concrete (range of 
grades)

0.0868 0.1× σUCS 3 to 4 0.5× σUCS 2.5 to 4 5.5 0.1 to
0.20

Granite (typical) 0.0972 25 7.0 3.6 0.28
Limestone (typical) 0.0961 8 to 16 6.0 2.8 0.21
Sandstone (typical) 0.0903 6 2.5 5.2 0.28
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Table B2: Materials Properties at Room Temperature (SI units)

Material Density Yield
strength
(tension)

Ultimate
strength
(tension)

Ultimate
strength

(compression)

Ultimate
strength
(shear)

Young's
modulus

Shear
modulus

Thermal
expansion
coefficient

Poisson's
ratio

ρ σYS σUTS σUCS τult E G α ν

(g/cm3) (MPa) (MPa) (MPa) (MPa) (GPa) (GPa) (10-6 mm/
(mm°C))

-

Steels
ASTM A36 7.85 250 400 - - 207 83 11.7 0.25
ASTM A992 (HSLA) 7.85 345 450 - - 207 83 11.7 0.25
AISI 80X (HSLA) 7.85 550 690 - - 207 80 11.7 0.28
AISI 1020, annealed 7.85 295 395 - - 207 83 11.7 0.25
AISI 1020, cold rolled 7.85 330 450 - - 207 83 11.7 0.25
AISI 1040, annealed 7.85 350 520 - - 207 83 11.3 0.25
AISI 1040, cold rolled 7.85 415 620 - - 207 83 11.3 0.25
AISI 4140, annealed 7.85 420 655 - - 207 83 12.3 0.25
AISI 8620, annealed 7.85 385 540 - - 207 83 11.1 0.25
Stainless steels
Type 304, annealed 8.00 205 515 - - 193 86 17.2 0.29
Type 304, cold rolled 8.00 760 1035 - - 193 86 17.2 0.29
Type 409, annealed 7.80 205 380 - - 200 78 11.7 0.28
Cast irons
Grade 4 austempered ductile iron 7.1 1100 1400 - - 168 65 10.6 0.25
Class 35 gray cast iron 7.1 241 855 334 110 44 13.0 0.29
Aluminum alloys
2024-T4 2.78 325 470 - 285 73 28.0 23.2 0.33
6061-T6 2.70 275 310 - 205 69 26.0 23.6 0.33
7075-T6 2.80 505 570 - 330 72 26.9 23.6 0.33
Magnesium alloys
AZ80A, as extruded 1.80 250 340 - 150 45 17 26.0 0.35
AZ80A, T5 temper 1.80 275 380 - 165 45 17 26.0 0.35
Copper alloys
C10800 copper, hard-drawn 8.94 220 275 - 180 115 44 17.0 0.33
C26000 cartridge brass, annealed 8.53 110 330 - 235 110 40 19.9 0.38
C26000 cartridge brass, rolled 8.53 360 480 - 290 110 40 19.9 0.38
C63000 aluminum bronze, annealed 7.58 370 766 115 44 16.2 0.33
Titanium alloys
Ti-6Al-4V, annealed 4.43 830 900 - 550 114 42 8.6 0.34
Ti-6Al-4V, heat treated 4.43 1100 1170 - - 114 42 8.6 0.34
Concrete & Stone
Unreinforced concrete (range of 
grades)

2.40 0.1× σUCS 21 to 28 0.5× σUCS 17 to 28 9.9 0.1 to
0.20

Granite (typical) 2.69 170 48 6.5 0.28
Limestone (typical) 2.66 55 to 110 40 5.0 0.21
Sandstone (typical) 2.50 40 17 9.4 0.28

For most metals, the ultimate strength in compression is equal to the ultimate strength in tension.

Concrete, stone, and gray cast iron are significantly stronger in compression than in tension. The elastic portion of their 
stress-strain curves are not linear, so Young's modulus is not clearly defined for these materials.

The numbers in these tables are either typical or minimum values, for use in homework problems only. Use standards 
published by ASTM, SAE, et al., for materials property values before designing anything.
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Table B3: Materials Properties of Bolts in Bolted Joints*

Bolt Specification τall τall

(ksi) (MPa)
ASTM A307 low-carbon steel 12.0 82.5
ASTM A325N, threads in the shear plane 24.0 165
ASTM A325X, threads excluded from the shear plane 30.0 207
ASTM A490N, threads in the shear plane 30.0 207
ASTM A490X, threads excluded from the shear plane 37.5 260

Table B4: Materials Properties of Plates in Bolted Joints or Welded Joints

Plate Material σYS σYS σUTS σUTS σP-all σP-all σG-all σG-all σN-all σN-all

(ksi) (MPa) (ksi) (MPa) (ksi) (MPa) (ksi) (MPa) (ksi) (MPa)

ASTM A36 low-
carbon steel

36 250 58 400 87 600 21.6 150 29 200

ASTM A992 high-
strength low-alloy 
steel

50 345 65 448 97.5 672 30 207 32.5 224

Table B5: Unit Strengths for Fillet Welds Table B6: AISC Recommended Weld Sizes

Weld Size E60 electrode E70 electrode Plate Thickness Weld Size
(in.) fweld (kip/in.) fweld (kip/in.) (in.) (in.)
1/16 0.795 0.925 1/8 1/8
1/8 1.59 1.85 3/16 1/8 to 3/16
3/16 2.39 2.78 1/4 1/8 to 3/16
1/4 3.18 3.70 5/16 3/16 to 1/4
5/16 3.98 4.63 3/8 3/16 to 5/16
3/8 4.77 5.55 7/16 3/16 to 3/8
7/16 5.57 6.48 1/2 3/16 to 7/16
1/2 6.36 7.40 9/16 1/4 to 1/2
9/16 7.16 8.33 5/8 1/4 to 9/16
5/8 7.95 9.25 11/16 1/4 to 5/8

11/16 8.75 10.18 3/4 1/4 to 11/16
3/4 9.54 11.10 13/16 5/16 to 3/4

13/16 10.34 12.03 7/8 5/16 to 13/16
7/8 11.13 12.95

* ASTM Standard F3125 replaced ASTM Standards A325 and A490 in 2015. However, since A325 and A490 had been used for more 
than half a century before this change, we label the bolts as Grade A325 and Grade A490 under ASTM Standard F3125.
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Table B7: Descriptions of Materials and their Common Uses*

Steels

ASTM A36 Low-carbon, low-strength, low-cost rolled structural steel used for W-beams, I-beams, C-channels, etc.

ASTM A992 
(HSLA) &
AISI 80X (HSLA)

High-strength, low-alloy steels contain grain-refining elements such as boron which create very small grains, resulting in higher 
strength. Reheating to welding temperatures causes grains to grow, ruining the strength of the steel, therefore bolting or riveting are
preferred. Used for structural steel in buildings and large trucks. By definition, few alloying elements are added, keeping costs low.

AISI 1020 Low-carbon steel containing 0.20% carbon, 0.45% manganese. Cold rolling increases strength & decreases ductility.

AISI 1040 Medium-carbon steel containing 0.40% carbon, 0.75% manganese. Added carbon makes the alloy stronger than AISI 1020. Cold 
rolling further increases strength and decreases ductility.

AISI 4140 Add 0.95% chromium, 0.20% molybdenum, and a little manganese to AISI 1040 steel. Cost and strength increase. Quench & 
temper heat treatment can raise yield strength above 230 ksi. Used for machine parts.

AISI 8620 Add 0.55% nickel, 0.50% chromium, 0.20% molybdenum, and a little manganese to AISI 1020 steel. Cost and strength increase. 
Carburize to make a hard, wear-resistant high-carbon surface for gears and bearings.

Stainless steels

Type 304 Most common stainless steel, with 18% Cr, 8% Ni. Used for food handling equipment (cutlery, pots and pans), tubing, cryogenic 
equipment. Hardenable by cold work, but not through heat treatment. Not magnetic.

Type 409, annealed Contains 11% Cr, ½% Ni, therefore cheaper than type 304, with less corrosion resistance. Widely used for stainless exhaust pipes 
on cars and trucks. Magnetic.

Cast irons

Grade 4 austempered
ductile iron

Contains 3 to 4% carbon as spherical graphite particles which reduce stress concentrations. Austempering heat treatment gives it 
the strength and wear resistance of steel with the low cost and castability of cast iron. Used for crankshafts and other machine parts.

Class 35 gray cast 
iron

Contains 2.5 to 4% carbon in the form of graphite flakes which help absorb vibration, but create stress concentrations which reduce 
strength. Used for engine blocks and machinery bases. The elastic stress-strain curve is not linear, so yield strength is not reported.

Aluminum alloys

2024-T4 Contains 4.4% copper, 1.5% magnesium, 0.6% manganese. Used widely in the aircraft industry owing to its high strength to weight
ratio. T4 heat treatment quadruples yield strength of the soft annealed condition.

6061-T6 Contains 1% Mg, 0.6% Si, 03% Cu, 0.2% Cr. Used in canoes, trucks, pipelines, and other applications where good strength to 
weight ratio, corrosion resistance, and weldability are needed. T6 heat treat raises yield strength 2½ times vs. annealed condition.

7075-T6 Contains 5.6% zinc, 2.5% magnesium, 1.6% copper, 0.23% chromium. Used widely in the aircraft industry owing to its high 
strength to weight ratio and corrosion resistance. T6 heat treatment quadruples yield strength.

Magnesium alloys

AZ80A Contains 8.5% aluminum, 0.5% zinc. Commonly used as an extrusion. T5 heat treatment increases strength by 10%.

Copper alloys

C12200 phosphorus 
deoxidized copper

Contains min. 99.9% copper. Copper tube used for domestic water, medical gas, air conditioning, and refrigeration. Allowable 
stress depends on the amount of cold work, from 6 ksi (annealed) to 10 ksi (as-drawn) at room temp.

C26000 cartridge 
brass

Contains 70% Cu, 30% Zn. Cold work and heat treatment substantially improve mechanical properties. Widely used in electrical, 
hardware, ammunition, plumbing, and automotive industries. Susceptible to stress-corrosion cracking in the presence of ammonia.

C63000 Al bronze Contains 82% copper, 10% aluminum, 5% nickel, 3% iron. Used for pump parts, valve seats, faucet balls, gears, and cams.

Titanium alloys

Ti-6Al-4V Titanium alloys are expensive to produce partly because molten titanium explodes in air. Ti-6-4 is widely used in aerospace 
because it has half the density of steel, but higher strength and stiffness than aluminum aerospace alloys.

Concrete & Stone

Unreinforced 
concrete

10 times stronger in compression than in tension; commonly reinforced with steel to improve tensile strength. Wet curing increases 
strength as the concrete ages; 90% of strength reached within 28 days of pouring.

Granite Igneous rock. Hard, strong, durable material used for building exteriors and curbstones. Resistant to acid rain.

Limestone Sedimentary rock. Softer than granite, used for building exteriors and gravel for paving. Sensitive to acid rain.

Sandstone Sedimentary rock. Easier to carve than other rock. Used for paving and building exteriors.

* For more information, consult ASTM Standards, SAE Standards, the ASM Handbook series published by ASM International, the 
Copper Tube Handbook, and other engineering handbooks.
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Appendix C: Properties of Areas
In these diagrams, the polar moment of inertia, J, is about the center of gravity (the small circle marked
“CG”).

The moments of inertia, Ix and Iy, and radii of gyration, rGx and rGy, are about the x-x and y-y neutral axes
(horizontal and vertical magenta lines). In every case, J=I x+I y  and rG=√ I / A .
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Thin-walled circle

(A hollow circle with
thin wall of thickness
t, has an area equal to
the circumference × 
wall thickness. The 
cross-section of a 
copper water pipe is a
good example.)
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Appendix C: Properties of Areas
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Appendix D: Properties of Steel Beams and Pipes

Appendix D: Properties of Steel Beams and Pipes
W-beams

Steel is hot-rolled to manufacture beams in shapes that look like the letters I or L. In this diagram, the
flanges are the top and bottom horizontal portions of the beam; the web is the vertical portion. I-
shaped steel beams with wide flanges are called W-beams.

The tables below list geometric properties of hot-rolled steel beams.

U.S. Customary W-beams are designated by the nominal depth and the weight per unit length: a
W18×40 beam has a depth of about 18 inches and a weight per unit length of 40 lb./ft.

Table D1: U.S. Customary W-Beams

Beam Area Depth Flange
width

Flange
thickness

Web
thickness

Properties with respect to the x-x neutral axis
(moment of inertia, section modulus, radius of

gyration, and plastic section modulus)

Properties with respect to
the y-y neutral axis

w A d bf tf tw Ix Sx rGx Zx Iy Sy rGy

(in.)×(lb./ft.) (in.2) (in.) (in.) (in.) (in.) (in.4) (in.3) (in.) (in.3) (in.4) (in.3) (in.)
W44×335 98.5 44.0 15.9 1.77 1.03 31100 1410 17.8 1620 1200 150 3.49
W44×290 85.4 43.6 15.8 1.58 0.865 27000 1240 17.8 1410 1040 132 3.49
W44×262 77.2 43.3 15.8 1.42 0.785 24100 1110 17.7 1270 923 117 3.47
W44×230 67.8 42.9 15.8 1.22 0.710 20800 971 17.5 1100 796 101 3.43
W40×397 117 41.0 16.1 2.20 1.22 32000 1560 16.6 1800 1540 191 3.64
W40×297 87.3 39.8 15.8 1.65 0.930 23200 1170 16.3 1330 1090 138 3.54
W40×199 58.8 38.7 15.8 1.07 0.650 14900 770 16.0 869 695 88.2 3.45
W40×149 43.8 38.2 11.8 0.830 0.630 9800 513 15.0 598 229 38.8 2.29
W36×395 116 38.4 16.8 2.20 1.22 28500 1490 15.7 1710 1750 208 3.88
W36×302 89.0 37.3 16.7 1.68 0.945 21100 1130 15.4 1280 1300 156 3.82
W36×194 57.0 36.5 12.1 1.26 0.765 12100 664 14.6 767 375 61.9 2.56
W36×150 44.3 35.9 12.0 0.940 0.625 9040 504 14.3 581 270 45.1 2.47
W36×135 39.9 35.6 12.0 0.790 0.600 7800 439 14.0 509 225 37.7 2.38
W33×387 114 36.0 16.2 2.28 1.26 24300 1350 14.6 1560 1620 200 3.77
W33×201 59.1 33.7 15.7 1.15 0.715 11600 686 14.0 773 749 95.2 3.56
W33×130 38.3 33.1 11.5 0.855 0.580 6710 406 13.2 467 218 37.9 2.39
W33×118 34.7 32.9 11.5 0.740 0.550 5900 359 13.0 415 187 32.6 2.32
W30×391 115 33.2 15.6 2.44 1.36 20700 1250 13.4 1450 1550 198 3.67
W30×292 86.0 32.0 15.3 1.85 1.02 14900 930 13.2 1060 1100 144 3.58
W30×211 62.3 30.9 15.1 1.32 0.775 10300 665 12.9 751 757 100 3.49
W30×148 43.6 30.7 10.5 1.18 0.650 6680 436 12.4 500 227 43.3 2.28
W30×90 26.3 29.5 10.4 0.610 0.470 3610 245 11.7 283 115 22.1 2.09
W27×368 109 30.4 14.7 2.48 1.38 16200 1060 12.2 1240 1310 179 3.48
W27×281 83.1 29.3 14.4 1.93 1.06 11900 814 12.0 936 953 133 3.39
W27×194 57.1 28.1 14.0 1.34 0.750 7860 559 11.7 631 619 88.1 3.29
W27×146 43.2 27.4 14.0 0.975 0.605 5660 414 11.5 464 443 63.5 3.20
W27×114 33.6 27.3 10.1 0.930 0.570 4080 299 11.0 343 159 31.5 2.18
W27×84 24.7 26.7 10.0 0.640 0.460 2850 213 10.7 244 106 21.2 2.07
W24×370 109 28.0 13.7 2.72 1.52 13400 957 11.1 1130 1160 170 3.27
W24×279 81.9 26.7 13.3 2.09 1.16 9600 718 10.8 835 823 124 3.17
W24×192 56.5 25.5 13.0 1.46 0.810 6260 491 10.5 559 530 81.8 3.07
W24×104 30.7 24.1 12.8 0.750 0.500 3100 258 10.1 289 259 40.7 2.91
W24×76 22.4 23.9 8.99 0.680 0.440 2100 176 9.69 200 82.5 18.4 1.92
W24×55 16.2 23.6 7.01 0.505 0.395 1350 114 9.11 134 29.1 8.30 1.34
W21×201 59.3 23.0 12.6 1.63 0.910 5310 461 9.47 530 542 86.1 3.02
W21×166 48.8 22.5 12.4 1.36 0.750 4280 380 9.36 432 435 70.0 2.99
W21×147 43.2 22.1 12.5 1.15 0.720 3630 329 9.17 373 376 60.1 2.95
W21×83 24.4 21.4 8.36 0.835 0.515 1830 171 8.67 196 81.4 19.5 1.83
W21×62 18.3 21.0 8.24 0.615 0.400 1330 127 8.54 144 57.5 14.0 1.77
W21×50 14.7 20.8 6.53 0.535 0.380 984 94.5 8.18 110 24.9 7.64 1.30

183

t
w

x
d

t
f

b
f

x

y

y

flange

web



Appendix D: Properties of Steel Beams and Pipes

Table D1: U.S. Customary W-Beams (continued)

Beam Area Depth Flange
width

Flange
thickness

Web
thickness

Properties with respect to the x-x neutral axis
(moment of inertia, section modulus, radius of

gyration, and plastic section modulus)

Properties with respect to
the y-y neutral axis

w A d bf tf tw Ix Sx rGx Zx Iy Sy rGy

(in.)×(lb./ft.) (in.2) (in.) (in.) (in.) (in.) (in.4) (in.3) (in.) (in.3) (in.4) (in.3) (in.)
W18×311 91.6 22.3 12.0 2.74 1.52 6970 624 8.72 754 795 132 2.95
W18×211 62.3 20.7 11.6 1.91 1.06 4330 419 8.35 490 493 85.3 2.82
W18×130 38.3 19.3 11.2 1.20 0.670 2460 256 8.03 290 278 49.9 2.70
W18×86 25.3 18.4 11.1 0.770 0.480 1530 166 7.77 186 175 31.6 2.63
W18×60 17.6 18.2 7.56 0.695 0.415 984 108 7.47 123 50.1 13.3 1.68
W18×35 10.3 17.7 6.00 0.425 0.300 510 57.6 7.04 66.5 15.3 5.12 1.22
W16×100 29.4 17.0 10.4 0.985 0.585 1490 175 7.10 198 186 35.7 2.51
W16×67 19.6 16.3 10.2 0.665 0.395 954 117 6.96 130 119 23.2 2.46
W16×40 11.8 16.0 7.00 0.505 0.305 518 64.7 6.63 73.0 28.9 8.25 1.57
W16×31 9.13 15.9 5.53 0.440 0.275 375 47.2 6.41 54.0 12.4 4.49 1.17
W16×26 7.68 15.7 5.50 0.345 0.250 301 38.4 6.26 44.2 9.59 3.49 1.12
W14×159 46.7 15.0 15.6 1.19 0.745 1900 254 6.38 287 748 96.2 4.00
W14×99 29.1 14.2 14.6 0.780 0.485 1110 157 6.17 173 402 55.2 3.71
W14×82 24.0 14.3 10.1 0.855 0.510 881 123 6.05 139 148 29.3 2.48
W14×38 11.2 14.1 6.77 0.515 0.310 385 54.6 5.87 61.5 26.7 7.88 1.55
W14×22 6.49 13.7 5.00 0.335 0.230 199 29.0 5.54 33.2 7.00 2.80 1.04
W12×152 44.7 13.7 12.5 1.40 0.870 1430 209 5.66 243 454 72.8 3.19
W12×106 31.2 12.9 12.2 0.990 0.610 933 145 5.47 164 301 49.3 3.11
W12×72 21.1 12.3 12.0 0.670 0.430 597 97.4 5.31 108 195 32.4 3.04
W12×50 14.6 12.2 8.08 0.640 0.370 391 64.2 5.18 71.9 56.3 13.9 1.96
W12×40 11.7 11.9 8.01 0.515 0.295 307 51.5 5.13 57.0 44.1 11.0 1.94
W12×30 8.79 12.3 6.52 0.440 0.260 238 38.6 5.21 43.1 20.3 6.24 1.52
W12×19 5.57 12.2 4.01 0.350 0.235 130 21.3 4.82 24.7 3.76 1.88 0.822
W12×14 4.16 11.9 3.97 0.225 0.200 88.6 14.9 4.62 17.4 2.36 1.19 0.753
W10×100 29.3 11.1 10.3 1.12 0.680 623 112 4.60 130 207 40.0 2.65
W10×60 17.7 10.2 10.1 0.680 0.420 341 66.7 4.39 74.6 116 23.0 2.57
W10×49 14.4 10.0 10.0 0.560 0.340 272 54.6 4.35 60.4 93.4 18.7 2.54
W10×39 11.5 9.92 7.99 0.530 0.315 209 42.1 4.27 46.8 45.0 11.3 1.98
W10×30 8.84 10.5 5.81 0.510 0.300 170 32.4 4.38 36.6 16.7 5.75 1.37
W10×19 5.62 10.2 4.02 0.395 0.250 96.3 18.8 4.14 21.6 4.29 2.14 0.874
W10×12 3.54 9.87 3.96 0.210 0.190 53.8 10.9 3.90 12.6 2.18 1.10 0.785

W8×67 19.7 9.00 8.28 0.935 0.570 272 60.4 3.72 70.1 88.6 21.4 2.12
W8×40 11.7 8.25 8.07 0.560 0.360 146 35.5 3.53 39.8 49.1 12.2 2.04
W8×31 9.13 8.00 8.00 0.435 0.285 110 27.5 3.47 30.4 37.1 9.27 2.02
W8×24 7.08 7.93 6.50 0.400 0.245 82.7 20.9 3.42 23.1 18.3 5.63 1.61
W8×10 2.96 7.89 3.94 0.205 0.170 30.8 7.81 3.22 8.87 2.09 1.06 0.841
W6×25 7.34 6.38 6.08 0.455 0.320 53.4 16.7 2.70 18.9 17.1 5.61 1.52
W6×15 4.43 5.99 5.99 0.260 0.230 29.1 9.72 2.56 10.8 9.32 3.11 1.45
W6×9 2.68 5.90 3.94 0.215 0.170 16.4 5.56 2.47 6.23 2.20 1.11 0.905
W4×13 3.83 4.16 4.06 0.345 0.280 11.3 5.46 1.72 6.28 3.86 1.90 1.00
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W-beams in SI units are designated by the nominal depth and the mass per unit length. See the first part of Chapter 8 for the
method to calculate w, the weight per unit length.

Table D2: SI W-Beams

Beam Area Depth Flange
width

Flange
thickness

Web
thickness

Properties with respect to the x-x neutral axis
(moment of inertia, section modulus, radius of

gyration, and plastic section modulus)

Properties with respect to
the y-y neutral axis

A d bf tf tw Ix Sx rGx Zx Iy Sy rGy

(mm)×(kg/m) (mm2) (mm) (mm) (mm) (mm) (106 mm4) (103 mm3) (mm) (103 mm3) (106 mm4) (103 mm3) (mm)
W1100×499 63500 1120 404 45.0 26.2 12900 23100 452 26500 499 2460 88.6
W1100×433 55100 1110 401 40.1 22.0 11200 20300 452 23100 433 2160 88.6
W1100×390 49800 1100 401 36.1 19.9 10000 18200 450 20800 384 1920 88.1
W1100×343 43700 1090 401 31.0 18.0 8660 15900 445 18000 331 1660 87.1
W1000×591 75500 1040 409 55.9 31.0 13300 25600 422 29500 641 3130 92.5
W1000×443 56300 1010 401 41.9 23.6 9660 19200 414 21800 454 2260 89.9
W1000×296 37900 983 401 27.2 16.5 6200 12600 406 14200 289 1450 87.6
W1000×222 28300 970 300 21.1 16.0 4080 8410 381 9800 95.3 636 58.2
W920×588 74800 975 427 55.9 31.0 11900 24400 399 28000 728 3410 98.6
W920×449 57400 947 424 42.7 24.0 8780 18500 391 21000 541 2560 97.0
W920×289 36800 927 307 32.0 19.4 5040 10900 371 12600 156 1010 65.0
W920×223 28600 912 305 23.9 15.9 3760 8260 363 9520 112 739 62.7
W920×201 25700 904 305 20.1 15.2 3250 7190 356 8340 93.7 618 60.5
W840×576 73500 914 411 57.9 32.0 10100 22100 371 25600 674 3280 95.8
W840×299 38100 856 399 29.2 18.2 4830 11200 356 12700 312 1560 90.4
W840×193 24700 841 292 21.7 14.7 2790 6650 335 7650 90.7 621 60.7
W840×176 22400 836 292 18.8 14.0 2460 5880 330 6800 77.8 534 58.9
W760×582 74200 843 396 62.0 34.5 8620 20500 340 23800 645 3240 93.2
W760×434 55500 813 389 47.0 25.9 6200 15200 335 17400 458 2360 90.9
W760×314 40200 785 384 33.5 19.7 4290 10900 328 12300 315 1640 88.6
W760×220 28100 780 267 30.0 16.5 2780 7140 315 8190 94.5 710 57.9
W760×134 17000 749 264 15.5 11.9 1500 4010 297 4640 47.9 362 53.1
W690×548 70300 772 373 63.0 35.1 6740 17400 310 20300 545 2930 88.4
W690×419 53600 744 366 49.0 26.9 4950 13300 305 15300 397 2180 86.1
W690×289 36800 714 356 34.0 19.1 3270 9160 297 10300 258 1440 83.6
W690×217 27900 696 356 24.8 15.4 2360 6780 292 7600 184 1040 81.3
W690×170 21700 693 257 23.6 14.5 1700 4900 279 5620 66.2 516 55.4
W690×125 15900 678 254 16.3 11.7 1190 3490 272 4000 44.1 347 52.6
W610×551 70300 711 348 69.1 38.6 5580 15700 282 18500 483 2790 83.1
W610×415 52800 678 338 53.1 29.5 4000 11800 274 13700 343 2030 80.5
W610×285 36500 648 330 37.1 20.6 2610 8050 267 9160 221 1340 78.0
W610×155 19800 612 325 19.1 12.7 1290 4230 257 4740 108 667 73.9
W610×113 14500 607 228 17.3 11.2 874 2880 246 3280 34.3 302 48.8
W610×82 10500 599 178 12.8 10.0 562 1870 231 2200 12.1 136 34.0
W530×300 38300 584 320 41.4 23.1 2210 7550 241 8690 226 1410 76.7
W530×248 31500 572 315 34.5 19.1 1780 6230 238 7080 181 1150 75.9
W530×219 27900 561 318 29.2 18.3 1510 5390 233 6110 157 985 74.9
W530×123 15700 544 212 21.2 13.1 762 2800 220 3210 33.9 320 46.5
W530×92 11800 533 209 15.6 10.2 554 2080 217 2360 23.9 229 45.0
W530×74 9480 528 166 13.6 9.65 410 1550 208 1800 10.4 125 33.0
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Table D2: SI W-Beams (continued)

Beam Area Depth Flange
width

Flange
thickness

Web
thickness

Properties with respect to the x-x neutral axis
(moment of inertia, section modulus, radius of

gyration, and plastic section modulus)

Properties with respect to
the y-y neutral axis

A d bf tf tw Ix Sx rGx Zx Iy Sy rGy

(mm)×(kg/m) (mm2) (mm) (mm) (mm) (mm) (106 mm4) (103 mm3) (mm) (103 mm3) (106 mm4) (103 mm3) (mm)
W460×464 59100 566 305 69.6 38.6 2900 10200 221 12400 331 2160 74.9
W460×315 40200 526 295 48.5 26.9 1800 6870 212 8030 205 1400 71.6
W460×193 24700 490 284 30.5 17.0 1020 4200 204 4750 116 818 68.6
W460×128 16300 467 282 19.6 12.2 637 2720 197 3050 72.8 518 66.8
W460×89 11400 462 192 17.7 10.5 410 1770 190 2020 20.9 218 42.7
W460×52 6650 450 152 10.8 7.62 212 944 179 1090 6.37 83.9 31.0
W410×149 19000 432 264 25.0 14.9 620 2870 180 3240 77.4 585 63.8
W410×100 12600 414 259 16.9 10.0 397 1920 177 2130 49.5 380 62.5
W410×60 7610 406 178 12.8 7.75 216 1060 168 1200 12.0 135 39.9
W410×46.1 5890 404 140 11.2 6.99 156 773 163 885 5.16 73.6 29.7
W410×38.8 4950 399 140 8.76 6.35 125 629 159 724 3.99 57.2 28.4
W360×237 30100 381 396 30.2 18.9 791 4160 162 4700 311 1580 102
W360×147 18800 361 371 19.8 12.3 462 2570 157 2830 167 905 94.2
W360×122 15500 363 257 21.7 13.0 367 2020 154 2280 61.6 480 63.0
W360×57.8 7230 358 172 13.1 7.87 160 895 149 1010 11.1 129 39.4
W360×32.9 4190 348 127 8.51 5.84 82.8 475 141 544 2.91 45.9 26.4
W310×226 28800 348 318 35.6 22.1 595 3420 144 3980 189 1190 81.0
W310×158 20100 328 310 25.1 15.5 388 2380 139 2690 125 808 79.0
W310×107 13600 312 305 17.0 10.9 248 1600 135 1770 81.2 531 77.2
W310×74 9420 310 205 16.3 9.40 163 1050 132 1180 23.4 228 49.8
W310×60 7550 302 203 13.1 7.49 128 844 130 934 18.4 180 49.3
W310×44.5 5670 312 166 11.2 6.60 99.1 633 132 706 8.45 102 38.6
W310×28.3 3590 310 102 8.89 5.97 54.1 349 122 405 1.57 30.8 20.9
W310×21 2680 302 101 5.72 5.08 36.9 244 117 285 0.982 19.5 19.1
W250×149 18900 282 262 28.4 17.3 259 1840 117 2130 86.2 655 67.3
W250×89 11400 259 257 17.3 10.7 142 1090 112 1220 48.3 377 65.3
W250×73 9290 254 254 14.2 8.64 113 895 110 990 38.9 306 64.5
W250×58 7420 252 203 13.5 8.00 87.0 690 108 767 18.7 185 50.3
W250×44.8 5700 267 148 13.0 7.62 70.8 531 111 600 6.95 94.2 34.8
W250×28.4 3630 259 102 10.0 6.35 40.1 308 105 354 1.79 35.1 22.2
W250×17.9 2280 251 101 5.33 4.83 22.4 179 99.1 206 0.907 18.0 19.9
W200×100 12700 229 210 23.7 14.5 113 990 94.5 1150 36.9 351 53.8
W200×59 7550 210 205 14.2 9.14 60.8 582 89.7 652 20.4 200 51.8
W200×46.1 5890 203 203 11.0 7.24 45.8 451 88.1 498 15.4 152 51.3
W200×35.9 4570 201 165 10.2 6.22 34.4 342 86.9 379 7.62 92.3 40.9
W200×15 1910 200 100 5.21 4.32 12.8 128 81.8 145 0.870 17.4 21.4
W150×37.1 4740 162 154 11.6 8.13 22.2 274 68.6 310 7.12 91.9 38.6
W150×22.5 2860 152 152 6.60 5.84 12.1 159 65.0 177 3.88 51.0 36.8
W150×13.5 1730 150 100 5.46 4.32 6.83 91.1 62.7 102 0.916 18.2 23.0
W100×19.3 2470 106 103 8.76 7.11 4.70 89.5 43.7 103 1.61 31.1 25.4
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Steel Pipes

In the 1920s, iron and steel pipes were available in three thickness grades: Standard Weight, Extra Strong (XS), and Double 
Extra Strong (XXS). Subsequently, the “schedule” designation system was developed to cover other pipe wall thicknesses. 
Schedule 40 is the same as Standard Weight; Schedule 80 is the same as Extra Strong. Pipes are available from Schedule 5 
to Schedule 160. Regardless of the Schedule, the OD is identical between nominal sizes, so pipes of different Schedules can 
thread into the same fittings. The heavier Schedules have thicker walls, therefore smaller IDs.

Table D3: US Customary Steel Pipes

Nominal
diameter

Inside
diameter

Outside
diameter

Wall
thickness

Area Moment of
inertia

Section
modulus

Radius of
gyration

Polar
moment of

inertia

Weight per
unit length

di do t A I S rG J w
(in.) (in.) (in.) (in.) (in.2) (in.4) (in.3) (in.) (in.4) (lb./ft.)

Schedule 40
pipes

(Standard
Weight)

1 1.049 1.315 0.133 0.494 0.0873 0.133 0.421 0.175 1.68
2 2.067 2.375 0.154 1.07 0.666 0.561 0.787 1.33 3.66
3 3.068 3.500 0.216 2.23 3.02 1.72 1.16 6.03 7.58
4 4.026 4.500 0.237 3.17 7.23 3.21 1.51 14.5 10.8
5 5.047 5.563 0.258 4.30 15.2 5.45 1.88 30.3 14.6
6 6.065 6.625 0.280 5.58 28.1 8.50 2.25 56.3 19.0
8 7.981 8.625 0.322 8.40 72.5 16.8 2.94 145 28.6

Schedule 80
pipes

(Extra-Strong)

1 0.957 1.315 0.179 0.639 0.106 0.161 0.407 0.211 2.18
2 1.939 2.375 0.218 1.48 0.868 0.731 0.766 1.74 5.03
3 2.900 3.500 0.300 3.02 3.89 2.23 1.14 7.79 10.3
4 3.826 4.500 0.337 4.41 9.61 4.27 1.48 19.2 15.0
5 4.813 5.563 0.375 6.11 20.7 7.43 1.84 41.3 20.8
6 5.761 6.625 0.432 8.40 40.5 12.2 2.19 81.0 28.6
8 7.625 8.625 0.500 12.8 106 24.5 2.88 211 43.5

Table D4: SI Steel Pipes

Nominal
diameter

Inside
diameter

Outside
diameter

Wall
thickness

Area Moment of
inertia

Section
modulus

Radius of
gyration

Polar
moment of

inertia

Mass per
unit length

di do t A I S rG J
(mm) (mm) (mm) (mm) (mm2) (106 mm4) (103 mm3) (mm) (106 mm.4) (kg/m)

Schedule 40
pipes

(Standard
Weight)

25 26.7 33.5 3.40 322 0.0369 2.20 10.7 0.0738 2.52
51 52.5 60.5 4.00 710 0.285 9.41 20.0 0.569 5.57
76 78.0 88.9 5.45 1429 1.25 28.1 29.6 2.50 11.2
102 102 114 6.00 2036 2.98 52.2 38.2 5.96 16.0
127 128 141 6.50 2747 6.23 88.3 47.6 12.5 21.6
152 154 168 7.00 3541 11.5 137 57.0 23.0 27.8
203 203 219 8.00 5303 29.6 270 74.7 59.1 41.6

Schedule 80
pipes

(Extra-Strong)

25 24.3 33.5 4.60 418 0.0447 2.67 10.3 0.0894 3.28
51 49.3 60.5 5.60 966 0.368 12.2 19.5 0.735 7.58
76 73.7 88.9 7.60 1941 1.62 36.4 28.9 3.24 15.2
102 97.3 114 8.35 2771 3.89 68.3 37.5 7.78 21.8
127 122 141 9.50 3925 8.53 121 46.6 17.1 30.8
152 146 168 11.0 5426 16.8 200 55.6 33.6 42.6
203 194 219 12.5 8109 43.4 396 73.1 86.8 63.7

Additional data on steel beams and pipes are freely available online from AISC.

187



Appendix D: Properties of Steel Beams and Pipes

Copper Tubing

In the 1930s, thin-walled copper tubing was introduced throughout North America for domestic potable water and 
baseboard hot water heating. Three types are available in the U.S.:

Type K with the thickest wall, useable for underground applications.
Type L with an intermediate wall thickness, used in interior applications.
Type M with the thinnest wall, used in interior applications (in some areas, legal only for nonpressurized applications 
such as condensate drains).

Copper pipes are made with C10800 oxygen-free low-phosphorus copper. The nominal diameter is approximately equal to 
the inside diameter. The outside diameters are identical for all Types so they will fit the same elbows, valves, and other 

fittings, and are 1/8 of an inch larger than the nominal diameters. Wall thickness t=
d o−d i

2
.

Table D5: U.S. Customary Copper Tubing

Type K Type L Type M All Types
Nominal diameter Inside diameter Inside diameter Inside diameter Outside diameter

di di di do

(in.) (in.) (in.) (in.) (in.)
⅜ 0.402 0.430 0.450 0.500
½ 0.528 0.545 0.569 0.625
⅝ 0.652 0.668 0.690 0.750
¾ 0.745 0.785 0.811 0.875
1 0.995 1.025 1.055 1.125

1¼ 1.245 1.265 1.291 1.375
1½ 1.481 1.505 1.527 1.625
2 1.959 1.985 2.009 2.125

2½ 2.435 2.465 2.495 2.625
3 2.907 2.945 2.981 3.125

Copper water tube sold in SI units comes in Types A, B, and C (similar to Types K, L, and M, above). Nominal diameter is 
the outside diameter.

Table D6: SI Copper Tubing

Type A Type B Type C All Types
Nominal diameter Inside diameter Inside diameter Inside diameter Outside diameter

di di di do

(mm) (mm) (mm) (mm) (mm)
10 8.2 8.4 8.8 10
12 9.6 10.2 10.8 12
15 12.6 13.0 13.6 15
18 15.6 16.0 16.6 18
22 18.8 19.8 20.4 22
28 24.8 25.6 26.2 28
35 31.8 32.2 32.8 35
42 38.4 39.0 39.6 42
54 49.8 50.6 51.0 54
67 62.2 63.0 63.8 67

More sizes are available; see ASTM Standards B 88 and B 89 for a complete list.
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Appendix E: Mechanical and Dimensional Properties of Wood
Mechanical Properties of Air-Dried Boards and Timber

Wood is a natural material which varies in mechanical properties. Factors affecting 
strength and stiffness include defects (knots, insect and woodpecker holes), moisture 
content, service temperature, age of the tree at cutting, direction within the wood 
(along the grain, tangential, and radial), and geographic source of the tree. For 
example, this graph from the Forest Products Laboratory of the U.S. Department of 
Agriculture* shows variation in the same visual grade of lumber (same quality & 
equivalent species), cut from a wide geographical area.

The Allowable Stress Design method (ASD) sets the design stress at the bottom 5th 
percentile of wood within a stress grade. In theory, 5% of the wood used in any 
structure is weaker than the required strength...so use a Factor of Safety to prevent 
failure.

Table E1: U.S. Customary Materials Properties of Timber

Tree species Allowable Stresses
Bending Horizontal shear Tension

parallel to grain
Compression

 parallel to grain
Specific weight Young's modulus

γ E
(psi) (psi) (psi) (psi) (lb./ft.3) (ksi)

Eastern white pine 600 135 275 725 22 1100
Southern yellow pine 1400 175 825 1250 34 1700
Hem-fir 1000 150 500 1300 25 1400
Douglas fir 900 180 625 1050 30 1700
Redwood 1000 160 600 1050 25 1300

Table E2: SI Materials Properties of Timber

Tree species Allowable Stresses
Bending Horizontal shear Tension

parallel to grain
Compression

 parallel to grain
Density Young's modulus

ρ E
(MPa) (MPa) (MPa) (MPa) (kg/m3) (GPa)

Eastern white pine 4.1 0.93 1.9 5.0 350 7.6
Southern yellow pine 9.7 1.2 5.7 8.6 550 11.7
Hem-fir 6.9 1.0 3.4 9.0 400 9.7
Douglas fir 6.2 1.2 4.3 7.2 480 11.7
Redwood 6.9 1.1 4.1 7.2 400 9.0

Additional data on timber are freely available online from the U.S. Forest Products Laboratory of 
the U.S. Department of Agriculture at http://www.fpl.fs.fed.us.

In the following two tables, the width b and depth d are defined for timber standing on edge (as a 
beam, not a plank), so b<d . Area A is the cross-sectional area of the timber.

If the specific weight of your wood species does not match one of the values in the header of Table E3 (20, 30, or 40 lb./ft.3)
then use interpolation to find the weight per unit length – see the end of Chapter 10 for details. Similarly, use interpolation if
the density of your wood species is not in the header of Table E4 (320, 480, or 640 kg/m3) to find the mass per unit length.

* General Technical Report FPL GTR 190, Chapter 7, p. 7-6.

189

1.0 1.8 2.6
Young's modulus, E 

(106 psi)

0

8

16

Frequency
(%)

b

d
A



Appendix E: Mechanical and Dimensional Properties of Wood

Softwood Lumber and Timber Sizes

Softwood is “dressed” or planed from nominal size to the sizes listed below. These sizes are S4S (surfaced four sides). 
Weight per unit length depends on the density of the wood. Dried softwoods range in specific weight from 20 to 40 lb./ft.3 
(320 to 640 kg/m3). If a 2×4 is made of wood with a specific weight of 30 lb./ft.3, its weight per unit length is 1.09 lb./ft.

Table E3: U.S. Customary Timber Sizes

Nominal size
designation

Width Depth Cross-
sectional

area

Moment of
inertia

Section
modulus

Weight per unit
length

γ = 20 lb/ft.3

Weight per unit
length

γ = 30 lb/ft.3

Weight per unit
length

γ = 40 lb/ft.3

b d A Ix Sx w w w
(in.) (in.) (in.2) (in.4) (in.3) (lb./ft.) (lb./ft.) (lb./ft.)

2×2 1.5 1.5 2.25 0.422 0.563 0.313 0.469 0.625
2×3 1.5 2.5 3.75 1.95 1.56 0.521 0.781 1.04
2×4 1.5 3.5 5.25 5.36 3.06 0.729 1.09 1.46
2×6 1.5 5.5 8.25 20.8 7.56 1.15 1.72 2.29
2×8 1.5 7.25 10.9 47.6 13.1 1.51 2.27 3.02
2×10 1.5 9.25 13.9 98.9 21.4 1.93 2.89 3.85
2×12 1.5 11.25 16.9 178 31.6 2.34 3.52 4.69
4×4 3.5 3.5 12.3 12.5 7.1 1.70 2.55 3.40
4×6 3.5 5.5 19.3 48.5 17.6 2.67 4.01 5.35
4×8 3.5 7.25 25.4 111 30.7 3.52 5.29 7.05
4×10 3.5 9.25 32.4 231 49.9 4.50 6.74 8.99
4×12 3.5 11.25 39.4 415 73.8 5.47 8.20 10.9
4×14 3.5 13.25 46.4 678 102 6.44 9.66 12.9
4×16 3.5 15.25 53.4 1034 136 7.41 11.12 14.8
6×6 5.5 5.5 30.3 76.3 27.7 4.20 6.30 8.40
6×8 5.5 7.5 41.3 193 51.6 5.73 8.59 11.5
6×10 5.5 9.5 52.3 393 82.7 7.26 10.9 14.5
6×12 5.5 11.5 63.3 697 121 8.78 13.2 17.6
6×14 5.5 13.5 74.3 1130 167 10.3 15.5 20.6
6×16 5.5 15.5 85.3 1710 220 11.8 17.8 23.7
6×18 5.5 17.5 96.3 2460 281 13.4 20.1 26.7
6×20 5.5 19.5 107 3400 349 14.9 22.3 29.8
8×8 7.5 7.5 56.3 264 70.3 7.81 11.7 15.6
8×10 7.5 9.5 71.3 536 113 9.90 14.8 19.8
8×12 7.5 11.5 86.3 951 165 12.0 18.0 24.0
8×14 7.5 13.5 101 1540 228 14.1 21.1 28.1
8×16 7.5 15.5 116 2330 300 16.1 24.2 32.3
8×18 7.5 17.5 131 3350 383 18.2 27.3 36.5
8×20 7.5 19.5 146 4630 475 20.3 30.5 40.6
10×10 9.5 9.5 90.3 679 143 12.5 18.8 25.1
10×12 9.5 11.5 109 1200 209 15.2 22.8 30.3
10×14 9.5 13.5 128 1950 289 17.8 26.7 35.6
10×16 9.5 15.5 147 2950 380 20.5 30.7 40.9
10×18 9.5 17.5 166 4240 485 23.1 34.6 46.2
10×20 9.5 19.5 185 5870 602 25.7 38.6 51.5
10×22 9.5 21.5 204 7870 732 28.4 42.6 56.7
10×24 9.5 23.5 223 10300 874 31.0 46.5 62.0
12×12 11.5 11.5 132 1460 253 18.4 27.6 36.7
12×14 11.5 13.5 155 2360 349 21.6 32.3 43.1
12×16 11.5 15.5 178 3570 460 24.8 37.1 49.5
12×18 11.5 17.5 201 5140 587 28.0 41.9 55.9
12×20 11.5 19.5 224 7110 729 31.1 46.7 62.3
12×22 11.5 21.5 247 9520 886 34.3 51.5 68.7
12×24 11.5 23.5 270 12400 1060 37.5 56.3 75.1
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Timber beams in SI units are listed by their mass per unit length, not by their weight per unit length. A 200×360 timber 
beam made of wood with a density of 320 kg/m3 has a mass per unit length of 21 kg/m. Multiply by the mass per unit length

by gravity to obtain weight per unit length: .

Table E4: SI Timber Sizes

Nominal size
designation

Width Depth Cross-
sectional

area

Moment of
inertia

Section
modulus

Mass per unit
length

ρ = 320 kg/m3

Mass per unit
length

ρ = 480 kg/m3

Mass per unit
length

ρ = 640 kg/m3

b d A Ix Sx m/L m/L m/L
(mm) (mm) (103 mm2) (106 mm4) (103 mm3) (kg/m) (kg/m) (kg/m)

50×100 38.1 88.9 3.39 2.23 50.2 1.09 1.63 2.17
50×150 38.1 140 5.33 8.71 124 1.71 2.56 3.42
50×200 38.1 184 7.01 19.8 215 2.25 3.37 4.49
50×250 38.1 235 8.95 41.2 351 2.87 4.30 5.74
50×300 38.1 286 10.9 74.3 519 3.49 5.24 6.98
50×360 38.1 337 12.8 122 721 4.12 6.17 8.23
50×410 38.1 387 14.7 184 951 4.73 7.09 9.45

100×100 88.9 88.9 7.90 5.21 117 2.53 3.80 5.07
100×150 88.9 140 12.4 20.3 290 3.99 5.98 7.98
100×200 88.9 184 16.4 46.2 502 5.24 7.86 10.5
100×250 88.9 235 20.9 96.1 818 6.70 10.0 13.4
100×300 88.9 286 25.4 173 1212 8.15 12.2 16.3
100×360 88.9 337 30.0 284 1683 9.60 14.4 19.2
100×410 88.9 388 34.5 433 2230 11.1 16.6 22.1
150×150 140 140 19.6 32.0 457 6.28 9.42 12.6
150×200 140 191 26.7 81.3 851 8.57 12.9 17.1
150×250 140 241 33.7 163 1360 10.8 16.2 21.6
150×300 140 292 40.9 290 1990 13.1 19.7 26.2
150×360 140 343 48.0 471 2750 15.4 23.1 30.8
150×410 140 394 55.2 714 3620 17.7 26.5 35.4
150×460 140 445 62.3 1030 4620 20.0 30.0 39.9
150×510 140 496 69.4 1420 5740 22.3 33.4 44.5
200×200 191 191 36.5 111 1160 11.7 17.5 23.4
200×250 191 241 46.0 223 1850 14.8 22.1 29.5
200×300 191 292 55.8 396 2710 17.9 26.8 35.7
200×360 191 343 65.5 642 3750 21.0 31.5 42.0
200×410 191 394 75.3 974 4940 24.1 36.2 48.2
200×460 191 445 85.0 1400 6300 27.2 40.9 54.5
200×510 191 496 94.7 1940 7830 30.4 45.5 60.7
250×250 241 241 58.1 281 2330 18.6 27.9 37.2
250×300 241 292 70.4 500 3420 22.6 33.8 45.1
250×360 241 343 82.7 810 4730 26.5 39.7 53.0
250×410 241 394 95.0 1230 6240 30.4 45.7 60.9
250×460 241 445 107 1770 7950 34.4 51.6 68.7
250×510 241 495 119 2440 9840 38.2 57.4 76.5
250×560 241 546 132 3270 12000 42.2 63.3 84.3
250×610 241 597 144 4270 14300 46.1 69.2 92.2
300×300 292 292 85 606 4150 27.3 41.0 54.7
300×360 292 343 100 982 5730 32.1 48.2 64.2
300×410 292 394 115 1490 7550 36.9 55.3 73.7
300×460 292 445 130 2140 9640 41.6 62.5 83.3
300×510 292 495 145 2950 11900 46.3 69.5 92.7
300×560 292 546 159 3960 14500 51.1 76.7 102
300×610 292 597 174 5180 17300 55.9 83.8 112
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Appendix F: Beam Equations
Terminology Used in Beam Equations

RA and RB are the reaction forces at points A and B. MB is the reaction moment at point B.

Vx, Mx and Δx are the shear load, bending moment, and deflection at a distance x from the left end of the beam.

Ma and Δa are the bending moment and deflection at a distance x = a from the left end of the beam (typically the starting or 
ending point of a distributed load, or the location of a point load).

θ is the slope of the deflection curve in radians. Use the conversion factor 180 °=π rad  to convert results into degrees. θx is
the slope at a distance x from the left end of the beam, θa is the slope at a distance x = a from the left end of the beam, and 
θA and θB are the slopes at points A and B.

Every beam in this Appendix has a length L.

Point load at the midspan of a simply-supported beam

RA=RB=V max=
P
2

M max=
P L
4

 at the point load M x=
P x
2

 for x< L
2

Δmax=
P L3

48 E I
 at the point load

Δx=
P x(3 L2−4 x2)

48 E I
 for x≤ L

2

θA=θB=
P L2

16 E I

Point load at any location on a simply-supported beam

RA=
P b
L

, RB=
P a
L

,  Vmax is the greater of the two

M max=
P a b

L
 at the point load M x=

P b x
L

 for x < a

Δmax=
P a b(a+2b)√3 a(a+2b )

27 E I L
 at x=√ a (a+2b)

3
 when a > b

Δa=
P a 2b2

3E I L
 at the point load

Δx=
P b x(L2−b2−x2)

6 E I L
 for x < a

θA=
P b(L2−b2)

6 E L I
θB=

P a(L2−b2)
6 E L I
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Appendix F: Beam Equations

Two identical point loads, symmetrically placed on a 
simply-supported beam

RA=RB=V max=P

M max=P a  between point loads M x=P x  for x < a

Δmax=
P a(3 L2−4 a2)

24 E I
 at the midspan

Δx=
P x(3 L a−3a2− x2)

6 E I
 for x≤a

Δx=
P a(3 L x−3 x2−a2)

6 E I
 between point loads

θA=θB=
P (a+b)(L2−b2)

6 E I

Uniform distributed load along the entire length of a 
simply-supported beam

RA=RB=V max=
w L
2

V x=w( L
2
−x)

M max=
w L2

8
 at the midspan M x=

w x(L−x)
2

Δmax=
5w L4

384 E I
 at the midspan Δx=

w x(L3−2 L x2+x3)
24 E I

θA=θB=
w L3

24 E I

Uniform distributed load on a simply-supported beam

R A=V max=
w a(2 L−a)

2 L
RB=

w a2

2 L

V x=RA−w x  for x≤a V x=−R B  for x≥a

M max=
RA

2

2 w
 at x=

RA

w

M x=RA x−w x 2

2
 for x≤a ; M x=RB (L− x)  for x≥a

Δx=
w x [a 2(b+L)2−2 a x2(b+L)+L x3 ]

24 E I L
 for x≤a

Δx=
w a2(L− x)(4 x L−2 x2−a2)

24 E I L
 for x≥a

θA=
w (L2−b2)2

24 E I L
θB=

w (L−b)2(L2−2b L−b 2)
24 E I L
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Appendix F: Beam Equations

Uniform distributed load on a simply-supported beam

R A=
wb
2 L

RB=V max=
w b(2 L−b)

2 L

V x=RA−w x  for x≤a V x=−R B  for x≥a

M max=R A(a+ b2

4 L ) at x=a+ b2

2 L

M x=RA x  for x≤a             M x=RB (L− x)−w(L− x)2

2
 for x≥a

Δx=
w b2 x [4 L (L−x)−2(L− x)2−b2 ]

24 E I L
 for x<a

Δx=
w (L−x) [b2(L+a)2−2a(L−x)2(L+a)+L(L−x)3 ]

24 E I L
 for x≥a

θA=
w (L−a)2(L2−2 a L−a2)

24 E I L
θB=

w (L2−a2)2

24 E I L

Nonuniform distributed load, tapered along the length

RA=
wmax L

6
, RB=

wmax L
3

V x=
wmax L

6
−

wmax x2

2 L

M max=
wmax L2

9 √3
 at x= L

√3
M x=

wmax L x(L2−x2)
6 L2

Δmax=0.00652
wmax L4

E I
 at x=L√1−√ 8

15

Δx=
wmax x(3 x4−10 L2 x2+7 L4)

360 E I L

θA=
7 wmax L3

360 E I
θB=

8wmax L3

360 E I
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Appendix F: Beam Equations

Nonuniform distributed load on a simply-supported beam, 
tapering from the midspan to the ends

R A=RB=V max=
wmax L

4
V x=

wmax

4 L
(L2−4 x2) for x< L

2

M max=
wmax L2

12
 at the midspan

M x=
wmax L x

2 (12−2 x2

3 L2) for x< L
2

Δmax=
wmax L4

120 E I
 at the midspan

Δx=
wmax x (5 L2−4 x2 )2

960 E I L
 for x< L

2

θA=θB=
5wmax L3

192 E I

Point load at the end of a left-wall cantilever beam

RB=V max=P

M A=M max=−P L

M x=−P (L−x)

Δmax=
P L3

3 E I
 at the free end Δx=

P x2(3L−x)
6 E I

θA=0 θB=
P L2

2 E I

Point load at the end of a right-wall cantilever beam

R B=V max=P

M B=M max=−P L

M x=−P x

Δmax=
P L3

3 E I
 at the free end Δx=

P (2L3−3 L2 x+x3)
6 E I

θA=
P L2

2 E I
θB=0
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Appendix F: Beam Equations

Point load at any location on a left-wall cantilever beam

R A=V max=P

M A=M max=−P a M x=−P (a−x)  for x < a 

Δmax=
P a2(3 L−a)

6 E I
 at the free end

Δa=
P a3

3 E I
 at the point load

Δx=
P x2(3 a−x)

6 E I
 for x < a Δx=

P a2(3 x−a)
6 E I

 for x > a 

The beam bends in an arc between the support and the point load. To the
right of the point load, the deflection curve is a straight line, therefore 
the slope between the point load and the free end is constant.

θA=0 θB=θa=
P a2

2 E I

Point load at any location on a right-wall cantilever beam

R B=V max=P

M B=M max=−P b M x=−P (x−a)  for x > a 

Δmax=
P b2(3 L−b)

6 E I
 at the free end

Δa=
P b3

3 E I
 at the point load

Δx=
P b2(3 L−3 x−b)

6 E I
 for x < a 

Δx=
P (L− x)2(3b−L+ x)

6 E I
 for x > a 

θA=θa=
P b2

2 E I
θB=0

Uniform distributed load along the entire length of a left-
wall cantilever beam

R A=V max=wL V x=w (L−x)

M A=M max=
−w L2

2
M x=

−w (L−x)2

2

Δmax=
w L4

8E I
 at the free end Δx=

w (6 L2 x2−4 L x3+ x4)
24 E I

θA=0 θB=
w L3

6 E I
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Appendix F: Beam Equations

Uniform distributed load along the entire length of a right-
wall cantilever beam

R B=V max=wL V x=w x

M B=M max=
−w L2

2
M x=

−w x2

2

Δmax=
w L4

8 E I
 at the free end Δx=

w (x4−4 L3 x+3 L4)
24 E I

θA=
w L3

6 E I
θB=0

Nonuniform distributed load along the entire length of a 
left-wall cantilever beam, tapering from the support to the 
free end

R A=V max=
wmax L

2
V x=

wmax(L− x)2

2 L

M A=M max=
−wmax L2

6
M x=

−wmax (L− x)3

6 L

Δmax=
wmax L4

30 E I
 at the free end

Δx=
wmax (10 L3 x2−10 L2 x3+5 L x4−x5)

120 E I L

θA=0 θB=
w L3

24 E I

Nonuniform distributed load along the entire length of a 
right-wall cantilever beam, tapering from the support to 
the free end

R B=V max=
wmax L

2
V x=

wmax x2

2 L

M B=M max=
−wmax L2

6
M x=

−wmax x3

6 L

Δmax=
wmax L4

30 E I
 at the free end Δx=

wmax (x
5−5 L4 x+4 L5)
120 E I L

θA=
w L3

24 E I
θB=0
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Failure theories..............................................................................169
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Hoop stress......................................................................................34
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Interpolation..................................................................................112
Isostress lines.................................................................................151
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Load diagrams.................................................................................71
Longitudinal stress in a pipe...........................................................35
Microstrain......................................................................................23
Modulus of elasticity.......................................................................24
Mohr's circle..................................................................................151

Moment diagrams............................................................................83
Moment of inertia............................................................................49
Neutral axis......................................................................................94
normal stress....................................................................................23
Overhanging beams.........................................................................74
Pipes.................................................................................................34
Plastic deformation..........................................................................25
Plastic moment................................................................................97
Plastic section modulus...................................................................97
Poisson's ratio..................................................................................29
Polar moment of inertia..................................................................64
Pressure vessels...............................................................................34
Radius of curvature of a beam......................................................106
Radius of gyration...........................................................................63
Reference axis.................................................................................53
Rupture strength..............................................................................25
S4S.................................................................................................190
Section modulus..............................................................................95
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Shear modulus.................................................................................65
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Short block....................................................................................129
Simply-supported beams.................................................................70
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Steel columns................................................................................145
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Stress-strain curve...........................................................................23
Stress, thermal.................................................................................32
Superposition................................................................110, 126, 133
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